

Governo do Estado de Minas Gerais Sistema Estadual de Meio Ambiente Instituto Mineiro de Gestão das Águas Gerência de Monitoramento de Qualidade das Águas

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS SUPERFICIAIS DE MINAS GERAIS EM 2019

RESUMO EXECUTIVO ANUAL

Igam, Belo Horizonte 2021

Realização

SEMAD - Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável

Secretária

Marília Carvalho de Melo

IGAM - Instituto Mineiro de Gestão das Águas

Diretor geral

Marcelo da Fonseca

Diretora de Operações e Eventos Críticos

Wanderlene Ferreira Nacif

Gerente de Monitoramento de Qualidade das Águas

Katiane Cristina de Brito Almeida

159a Instituto Mineiro de Gestão das Águas.

Avaliação da qualidade das águas superficiais de Minas Gerais em 2019: resumo executivo anual / Instituto Mineiro de Gestão das Águas. --- Belo Horizonte: Igam, 2021.

211 p.: il.

Vários colaboradores.

1. Monitoramento ambiental. 2. Qualidade da água. 3. Águas superficiais - Minas Gerais. I. Título.

CDU: 556.18(815.1)

Ficha catalográfica elaborada por Márcia Beatriz Silva de Azevedo - CRB 1934/6

REALIZAÇÃO:

IGAM – Instituto Mineiro de Gestão das Águas

Diretora de Operações e Eventos Críticos

Wanderlene Ferreira Nacif

Gerência de Monitoramento de Qualidade das Águas

Katiane Cristina de Brito Almeida

Equipe Técnica

Carolina Cristiane Pinto, Engenheira Química

Mariana Elissa Vieira de Souza, Geógrafa

Marina Santos Oliveira, graduanda em Engenharia Ambiental

Matheus Duarte Santos, Geógrafo

Regina Márcia Pimenta Assunção, Bióloga

Sérgio Pimenta Costa, Biólogo

Vanessa Kelly Saraiva, Química

APOIO:

Coletas de Amostras e Análises

FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DE MINAS GERAIS - FIEMG

Flávio Roscoe Nogueira/ Presidente

Cláudio Marcassa/Diretor Regional do SENAI DR MG

CENTRO DE INOVAÇÃO E TECNOLOGIA SENAI FIEMG

Gerência de Laboratórios

Marcos Bartasson Tannús/Gerente

Gerência de Tecnologia e Inovação

José Luciano de Assis Pereira/Gerente

Instituto Senai de Tecnologia em Meio Ambiente

Cláudia Lauria Fróes Siúves - Bióloga, Responsável Laboratório de Ecotoxicologia

Cláudia Márcia Perrout Cerqueira - Bióloga, Responsável Laboratório de Microbiologia

Hanna Duarte Almeida Ferraz - Bióloga, Responsável Laboratório de Cianobactérias e Algas

Marina Miranda Marques Viana - Química, Responsável Qualidade

Mônica de Cassia Souza Campos - Bióloga, Responsável Laboratório de Macroinvertebrados

Nathália Mara Pedrosa Chedid - Bióloga, Responsável Laboratório de Clorofila e Microinvertebrados

Patrícia Pedrosa Marques Guimarães - Química, Gestora de Amostragem e Coordenadora do Projeto

Zenilde Das Graças Guimarães Viola - Química, Responsável Laboratório de Água e Efluentes Líquidos

Instituto Senai de Tecnologia em Química

Luiz Cláudio de Melo Costa – Químico, Pesquisador Líder

Renata Amorim Alves Sabino – Engenheira Química, Responsável Laboratório de Traços Metálicos

Zenilde das Graças Guimarães Viola – Química, Chefe de Laboratório

Avaliação Climatológica

Instituto Mineiro de Gestão – IGAM Gerência de Monitoramento Hidrometeorológico e Eventos Críticos

Fabrízia Rezende Araújo

Equipe Técnica

Luiza Pinheiro Rezende Ribas, Engenheira Ambiental Paula Pereira de Souza, Meteorologista

LISTA DE FIGURAS

Figura 1: Pontos de Monitoramento de Qualidade da Água Superficial da Rede Básica em operação em 2019
Figura 2: Pontos de Monitoramento de Qualidade da Água Superficial das Redes Dirigidas em operação em 2019
Figura 3: Evolução do número de estações de monitoramento da Rede Básica de monitoramento do programa Águas de Minas ao longo dos anos
Figura 4: Pontos de Monitoramento de Qualidade da Água Superficial da Rede Básica em que são realizadas medições de vazão, em 201915
Figura 5: Número de estações de monitoramento por Circunscrição Hidrográfica 17
Figura 6: Frequência de ocorrência do IQA trimestral no estado de Minas Gerais ao longo da série histórica de monitoramento
Figura 7: Frequência de ocorrência do IQA trimestral nas bacias hidrográficas do estado de Minas Gerais nos anos de 2018 e 201934
Figura 8: Frequência de ocorrência do IQA trimestral nas sub-bacias do rio São Francisco nos anos de 2018 e 2019
Figura 9: Média anual do Índice de Qualidade da Água no Estado de Minas Gerais em 2019
Figura 10: Frequência de ocorrência da Contaminação por Tóxicos nas bacias do estado de Minas Gerais ao longo da série histórica de monitoramento
Figura 11: Frequência de ocorrência da Contaminação por tóxicos no estado de Minas Gerais nos anos de 2018 e 2019
Figura 12: Frequência de ocorrência da Contaminação por tóxicos nas sub-bacias do rio São Francisco nos anos de 2018 e 201940
Figura 13: Contaminação por tóxicos no Estado de Minas Gerais em 201941
Figura 14: Frequência de ocorrência de IET nas bacias do estado de Minas Gerais no período de 2007 a 201944
Figura 15: Frequência de ocorrência dos resultados do IET nas bacias hidrográficas de Minas Gerais no ano de 2019
Figura 16: Frequência de ocorrência dos resultados do IET nas sub-bacias do rio São Francisco no ano de 201947
Figura 17: Médias do Índice de Estado Trófico – IET no Estado de Minas Gerais em 2019
Figura 18: Percentual de violações para os parâmetros no Estado de Minas Gerais em 2018 e 201949
Figura 19: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico, contaminação fecal e contaminação por substâncias tóxicas para os anos de 2018 e 201950
Figura 20: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de contaminação fecal nas bacia de MG, em 2018 e 2019
Figura 21: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de contaminação fecal nas sub-bacia do rio São Francisco, em 2018 e 2019

Figura 22: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico nas bacia de MG, em 2018 e 2019
Figura 23: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico nas sub-bacia do rio São Francisco, em 2018 e 201953
Figura 24: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de substâncias tóxicas nas bacia de MG, em 2018 e 2019
Figura 25: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de substâncias tóxicas nas sub-bacia do rio São Francisco, em 2018 e 2019
Figura 26: Percentuais dos maiores valores de densidade de cianobactérias obtidos ao longo da série histórica de monitoramento55
Figura 27: Pontos de monitoramento e respectivas classes de densidade de cianobactérias no Estado de Minas Gerais em 201957
Figura 28: Frequência de ocorrência dos resultados de ecotoxicidade em Minas Gerais ao longo da série histórica de monitoramento

LISTA DE TABELAS

Tabela 1: Número de estações monitoradas na Rede Básica e das utilizadas para cálculo dos índices
Tabela 2: Pesos atribuídos aos parâmetros para o cálculo do IQA22
Tabela 3: Classes do Índice de Qualidade da Água e seu Significado22
Tabela 4: Classes da Contaminação por Tóxicos e seus significados23
Tabela 5: Classes do Índice de Estado Trófico (rios) e seu significado
Tabela 6: Classes das densidades de cianobactérias
Tabela 7: Corpos de água que apresentaram as piores condições de IQA no ano de 2019 no Estado de Minas Gerais
Tabela 8: Corpos de água que apresentaram as piores condições de CT em Minas Gerais no ano de 2019
Tabela 9: Corpos de água que apresentaram densidade de cianobactéria igual ou superior a 20.000 cél/mL em Minas Gerais no ano de 201959
Tabela 10: Percentual de ocorrência de efeito agudo (pior condição) nas estações durante as campanhas de monitoramento de 2019
Tabela 11: Estações de monitoramento de qualidade da água com medição simultânea de vazão que apresentaram concentrações de DBO superiores ao limite de detecção do método analítico em 2019
Tabela 12: Estações de monitoramento de qualidade da água com medição simultânea de vazão que apresentaram concentrações de fósforo total superiores ao limite de classe (0,1 mg/L) em 2019

SUMÁRIO

1	MONITORAMENTO DA QUALIDADE DAS ÁGUAS			
	1.1 1.2 1.3	Monitoramento Quantitativo	16 stragem	
2	IND	DICADORES DE QUALIDADE DA ÁGUAS	19	
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Índice de Qualidade das Águas – IQA Contaminação por Tóxicos – CT. Índice do Estado Trófico – IET	23 24 25	
3	AV/	ALIAÇÃO DA ANOMALIA DE PRECIPITAÇÃO TRIMESTRAL NO ANO		
4	AV	ALIAÇÃO DA QUALIDADE DAS ÁGUAS EM 2019	32	
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Índice de Qualidade das Águas – IQA Contaminação por Tóxicos – CT Índice de Estado Trófico – IET Análise da conformidade à legislação Panorama da Qualidade das Águas Superficiais Densidade de Cianobactérias Ensaios Ecotoxicológicos Avaliação dos dados de vazão e cargas de DBO e fósforo	38 44 50 54 64	
5	CO	NSIDERAÇÕES FINAIS	73	
R	EFERI	ÊNCIAS	75	
Α	NEXO	A	77	
Α	PÊND	ICE A	78	
Α	PÊND	ICE B	79	

1 MONITORAMENTO DA QUALIDADE DAS ÁGUAS

No estado de Minas Gerais, o monitoramento da qualidade das águas superficiais é realizado pelo Igam, por meio do Programa Águas de Minas, em execução desde 1997.

Os vinte e três anos de operação da rede de monitoramento vêm demonstrando a sua importância no fornecimento de informações básicas necessárias para a definição de estratégias e da própria avaliação da efetividade do Sistema de Controle Ambiental, sob responsabilidade da SEMAD, e para o planejamento e Gestão Integrada dos Recursos Hídricos, subsidiando a formação e atuação dos Comitês e Agências de Bacias a cargo do Igam/CERH.

Os principais objetivos do programa são: verificar as condições de qualidade das águas superficiais por meio de análises *in loco* e em laboratório de amostras coletadas em estações de monitoramento georreferenciadas; avaliar as alterações espaciais e temporais na qualidade das águas buscando ressaltar tendências observáveis; relacionar os resultados com as características de ocupação e atividades antrópicas nas diferentes bacias hidrográficas; auxiliar na identificação e na implementação de estratégias de aperfeiçoamento de instrumentos gerenciais; definir bacias e corpos de água onde o detalhamento da macro rede mostra-se necessário, mediante redes dirigidas; divulgar aos órgãos do judiciário e aos usuários de água o relatório anual de qualidade das águas superficiais; disponibilizar via Internet os resultados trimestrais do monitoramento, bem como relatórios e mapas.

A área de abrangência do programa de monitoramento das águas superficiais inclui as principais bacias hidrográficas mineiras. No monitoramento denominado de rede básica as coletas são realizadas em locais estratégicos para se avaliar os pontos de entrega limítrofes entre estados, as confluências de corpos de água e os locais com impactos de qualidade já conhecidos ou potenciais. Os resultados possibilitam identificar a variação da qualidade em períodos específicos para detectar e medir tendências, elaborar diagnósticos e propor ações preventivas.

A rede básica de monitoramento está em constante ampliação visando a cobertura da maior área hidrográfica possível no Estado e a identificação de regiões onde são significativas as pressões ambientais. No ano de 2019 a rede básica de monitoramento (macro-rede) contava com 628 estações de amostragem distribuídas nas bacias hidrográficas dos rios São Francisco, Grande, Doce, Paranaíba, Paraíba do Sul, Mucuri, Jequitinhonha, Pardo, Buranhém, Itapemirim, Itabapoana, Itanhém, Itaúnas, Jucuruçu, Peruípe, São Mateus e Piracicaba/Jaguari.

Para identificar as regiões onde são dominantes as pressões ambientais decorrentes de ações antrópicas, tais como, atividades industriais, minerárias, agropecuárias, de silvicultura, de saneamento, de infraestrutura dentre outras, que em muitos casos exigem uma caracterização mais específica da qualidade das águas são implantadas as chamadas redes dirigidas ou especiais. Essas redes objetivam identificar áreas críticas e avaliar a urgência de ações que visem a melhoria da qualidade das águas. Elas variam em relação à rede básica quanto à frequência de coleta, número de pontos e/ou tipos de parâmetros monitorados. No caso dos desastres ocorridos nas bacias dos rios Doce e Paraopeba, em 2015 e 2019, respectivamente, o IGAM executa um monitoramento especial nos rios afetados no intuito de acompanhar a situação e evolução da qualidade das águas superficiais, com divulgação periódica dos resultados.

Atualmente, as redes dirigidas possuem 21 estações de monitoramento. Essas redes têm objetivos específicos, tais como subsidiar as propostas de enquadramento da subbacia da Pampulha e acompanhar a qualidade das Águas da Cidade Administrativa de Minas Gerais (CAMG) e Parque Estadual Serra Verde (PESV). Os pontos de monitoramento das redes básica e dirigidas são apresentados, respectivamente, na 1 e na **Erro! Fonte de referência não encontrada.** a seguir.

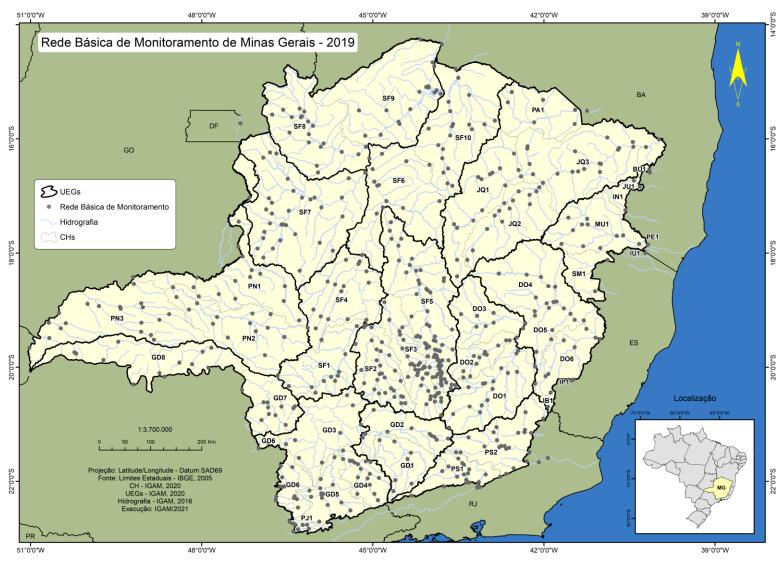


Figura 1: Pontos de Monitoramento de Qualidade da Água Superficial da Rede Básica em operação em 2019.

Fonte: Elaborado pelos autores (2021)

44°5'0"W 44°0'0"W 43°55'0"W CA002 REDE DE MONITORAMENTO DIRIGIDA - 2019 CA007 CA006 Cidade Administrativa e Pampulha CA009 19°50'0"S PV190 PV180 PV230 Rib. Pampulha PV175 PV167 Rede de Monitoramento - CAMG PV210 Rede de Monitoramento - Pampulha PV105 💢 Lagoa da Pampulha PV07.0 Hidrografia Limites Municipais PV065 PV090 LOCALIZAÇÃO PV037 45°0'0"W 42°0'0"W Projeção: Latitude/Longitude Datum Sirgas 2000 Limites Municipais: IGA, 2011 CH: IGAM, 2020 PV005 1:100.000 Hidrografia: IGAM, 2016 Execução: GEMOQ/IGAM - 2021 44°5'0"W 44°0'0"W 43°55'0"W

Figura 2: Pontos de Monitoramento de Qualidade da Água Superficial das Redes Dirigidas em operação em 2019.

Fonte: Elaborado pelos autores (2021)

Em 2016, o Igam aderiu ao Programa de Estímulo à Divulgação de Dados de Qualidade de Água - QUALIÁGUA de iniciativa da Agência Nacional das Águas (ANA) com os seguintes objetivos:

- Contribuir para a gestão sistemática dos recursos hídricos, através da divulgação de dados sobre a qualidade das águas superficiais a toda a sociedade;
- ❖ Estimular a padronização dos critérios e métodos de monitoramento de qualidade de água no País, de acordo com as diretrizes estabelecidas na Resolução ANA nº 903/2013, para tornar essas informações comparáveis em nível nacional:
- Contribuir para o fortalecimento e estruturação dos órgãos estaduais gestores de recursos hídricos e meio ambiente para que realizem o monitoramento sistemático da qualidade das águas e deem publicidade aos dados gerados;
- Promover a implementação da Rede Nacional de Monitoramento da Qualidade das Águas - RNQA, no âmbito do Programa Nacional de Avaliação da Qualidade das Águas - PNQA.

Dessa forma, a rede de monitoramento do Igam vem sendo ampliada para atender adequadamente aos objetivos da gestão de recursos hídricos no estado e às metas do programa Qualiágua.

A Figura 3 apresenta a evolução, ao longo dos anos, do número de pontos de amostragem implantados para o monitoramento de qualidade de água em Minas Gerais, entre os anos de 1997 e 2019.

Figura 3: Evolução do número de estações de monitoramento da Rede Básica de monitoramento do programa Águas de Minas ao longo dos anos.

Fonte: Elaborado pelos autores (2021)

1.1 Monitoramento Quantitativo

Com a adesão do Igam ao Programa de Estímulo à Divulgação de Dados de Qualidade de Água – QUALIÁGUA, promovido pela ANA, iniciou-se em 2016 a medição de vazão simultânea ao monitoramento de qualidade de água.

Incrementar os pontos da rede qualitativa de monitoramento com a medição de vazão é uma necessidade para o Igam, uma vez que a utilização apenas de dados de

concentração para avaliação da qualidade da água pode não ser capaz de explicar completamente as mudanças espaciais e temporais dos parâmetros de qualidade.

A estimativa das cargas poluentes é de interesse crucial para identificar o nível de qualidade da água, entender os processos e identificar as fontes de poluição (QUILBÉ et al., 2006).

Segundo Tucci (2005), as medidas de concentração isoladas em um curso d'água não apresentam representatividade temporal e espacial, uma vez que a mesma se altera com a vazão. A utilização somente de dados de concentração pode levar a análises tendenciosas, visto que medições de concentração em dias chuvosos, quando a vazão é maior e a capacidade de diluição também, resultam em melhores estados de qualidade da água. A diminuição na concentração de um determinado parâmetro não significa, necessariamente, que houve degradação do poluente ou restrição de suas fontes. A diminuição pode simplesmente ter ocorrido devido ao aumento de vazão do corpo d'água e consequente diluição do poluente.

Nesse sentido, o incremento dos pontos da rede qualitativa de monitoramento com a medição de vazão propiciará avaliações mais abrangentes e fidedignas da qualidade da água.

Em 2019, a rede de monitoramento do Igam contava com 210 estações em que são realizadas medições de vazão simultânea ao monitoramento de qualidade de água. As estações estão distribuídas nas bacias hidrográficas dos rios Grande, São Francisco, Paraíba do Sul, Jequitinhonha, Mucuri, Paranaíba, Doce, São Mateus, Jucuruçu, Itabapoana, Itanhém, Peruípe, Piracicaba/Jaguari e Buranhém. A escolha da localização dos pontos de coleta é realizada em consonância com a proposta da Rede Nacional de Monitoramento da Qualidade das Águas — RNQA da ANA. Os pontos de monitoramento da rede básica em que são realizadas medições de vazão são apresentados, na **Erro! Fonte de referência não encontrada.**. Em relação à periodicidade de análises, a medição de vazão simultânea ao monitoramento de qualidade de água é realizada com frequência semestral.

Faz parte do aprimoramento do monitoramento da qualidade das águas superficiais a ampliação da rede de monitoramento quali-quantitativa do Igam para atender adequadamente aos objetivos e às metas da RNQA.

51°0'0"W 48°0'0"W 45°0'0"W 42°0'0"W Estações de Monitoramento Quali-Quanti - 2020 **⇔**UEGs Estações Qualidade / Quantidade Estações Qualidade Hidrografia Localização ão: Latitude/Longitude - Datum SIRGAS 2000 Fonte: Limites Estaduais - IBGE, 2005 CH - IGAM, 2020 UEGs - IGAM, 2020 Hidrografia - IGAM, 2016 Rede Monitorada - IGAM, 2019 Execução: IGAM/2021 48°0'0"W

Figura 4: Pontos de Monitoramento de Qualidade da Água Superficial da Rede Básica em que são realizadas medições de vazão, em 2019.

Fonte: Elaborado pelos autores (2021)

1.2 Unidades Estratégicas de Gestão - UEG

A preservação e a utilização racional dos recursos hídricos são aspectos importantes para a resolução de problemas agudos relacionados à questão hídrica, visando ao bem estar de todos e à preservação do meio ambiente.

A pressão antrópica devido ao desenvolvimento das atividades econômicas e o adensamento populacional de forma desordenada vem ocasionando crescentes problemas aos recursos hídricos. Em virtude disso, as instâncias públicas e civis mobilizaram-se para a criação de legislação e políticas específicas, a fim de fundamentar a gestão participativa e descentralizada dos recursos hídricos.

Visando orientar o planejamento, a estruturação e a formação dos Comitês de Bacia Hidrográfica no Estado, o CERH-MG estabeleceu, por meio da Deliberação Normativa Nº 66, de 17 de novembro de 2020, as Unidades Estratégicas de Gestão do Estado de Minas Gerais – UEG (**Erro! Fonte de referência não encontrada.**). As UEG são compostas pelas Circunscrições Hidrográficas – CH, conforme estabelecido no Anexo I da referida DN.

As UEG foram definidas como regiões hidrográficas com características comuns ou similares de usos, demandas e disponibilidades hídricas, para fins de gestão, com ênfase no planejamento e monitoramento, configurando uma estratégia de espacialização para integração entre comitês de bacias.

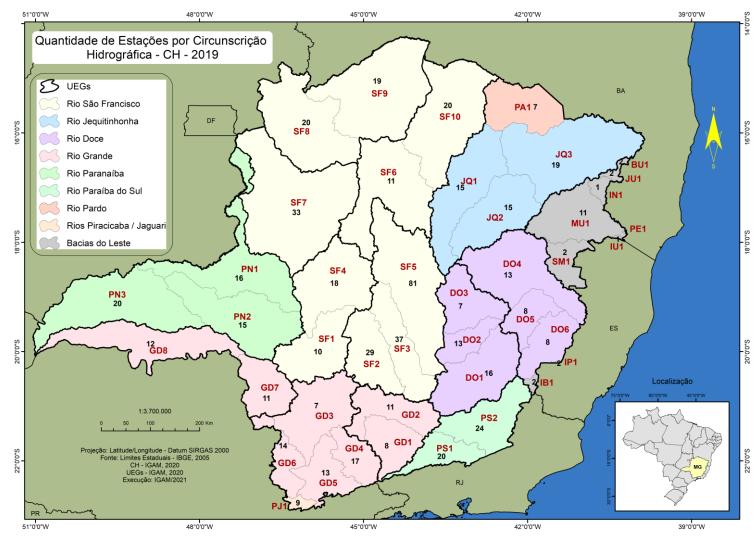


Figura 5: Número de estações de monitoramento por Circunscrição Hidrográfica.

Fonte: Elaborado pelos autores (2021)

1.3 Parâmetros Indicativos da Qualidade das Águas e Frequência de Amostragem

A poluição das águas tem como origem diversas fontes, pontuais e difusas, associadas ao tipo de uso e ocupação do solo. De um modo geral, foram adotados parâmetros de monitoramento que permitem caracterizar a qualidade da água e o grau de contaminação dos corpos de água.

As campanhas de amostragem são trimestrais para a maioria das estações de monitoramento, com um total anual de 4 campanhas. Para as estações localizadas nas calhas dos rios das Velhas, Doce e Paraopeba as campanhas são mensais.

No Quadro 1 são apresentados os parâmetros de qualidade de água analisados no Nas campanhas completas, estado Minas Gerais. realizadas janeiro/fevereiro/março (JFM) e em julho/agosto/setembro (JAS), classificados climatologicamente como períodos de chuva e estiagem, respectivamente, são analisados 60 parâmetros de qualidade de água. Ressalta-se que esses parâmetros não são monitorados em todas as estações. Nas campanhas intermediárias, realizadas nos meses abril/maio/junho (AMF) e outubro/novembro/dezembro (OND), considerados períodos de transição, são analisados 19 parâmetros genéricos em todos os pontos. além daqueles característicos das fontes poluidoras que contribuem para a área de drenagem da estação de coleta.

Em alguns pontos de monitoramento são analisados alguns parâmetros específicos como perfil térmico, densidade de cianobactérias, cianotoxinas (microcistina e saxitoxina), ensaios de toxicidade crônica e macroinvertebrados bentônicos,

Destaca-se que o parâmetro *Escherichia coli* passou a ser avaliado em contrapartida aos coliformes termotolerantes, a partir da primeira campanha de 2013. Esse fato se deve a estudos atuais que vem mostrando a espécie *Escherichia coli* como sendo a única indicadora inequívoca de contaminação fecal, humana ou animal, uma vez que foram identificadas algumas poucas espécies de coliformes termotolerantes habitando ambientes naturais apresentando, portanto, limitações como indicadores de contaminação fecal. No Anexo A é apresentada uma tabela com as unidades de medida dos parâmetros e os respectivos limites legais.

Quadro 1: Parâmetros de qualidade de água avaliados nas estações de amostragem do Programa Águas de Minas.

Parâmetros monitorados no Programa Águas de Minas				
Alcalinidade total	Dureza total	Óleos e graxas		
Alumínio dissolvido	Ensaio ecotoxicológico#	Oxigênio dissolvido*		
Arsênio Dissolvido	Escherichia coli/colif. termotolerantes*	Perfil Térmico#		
Arsênio total	Estanho total	pH in loco*		
Bário total	Fenóis totais	Potássio dissolvido		
Boro total	Feoftina a*	Saxitoxina#		
Cádmio total	Ferro dissolvido	Selênio total		
Cálcio total	Ferro total	Sódio dissolvido		
Chumbo total	Fitoplâncton#	Sólidos dissolvidos totais*		
Cianeto Livre	Fósforo total*	Sólidos em suspensão totais*		
Cloreto total*	Macroinvertebrados bentônicos#	Sólidos sedimentáveis		
Clorofila a*	Magnésio total	Sólidos totais*		
Cobre dissolvido	Manganês total	Substâncias tensoativas		
Coliformes totais*	Mercúrio total	Sulfato total		
Condutividade elétrica in loco*	Microcistina#	Sulfeto		
Cor verdadeira	Níquel total	Temperatura da água*		
Cromo total	Nitrato*	Temperatura do ar*		
Demanda Bioquímica de Oxigênio*	Nitrito	Transparência da água		
Demanda Química de Oxigênio*	Nitrogênio amoniacal total*	Turbidez*		
Densidade de cianobactérias#	Nitrogênio orgânico	Zinco total		

^{*} Parâmetros comuns a todos os pontos nas campanhas intermediárias

Os resultados de qualidade de água gerados são armazenados em uma base de dados do IGAM, que contém informações atuais e históricas, permitindo observar a evolução da qualidade das águas nas duas últimas décadas. De posse dos dados laboratoriais, a equipe do Igam avalia os resultados e elabora mapas e relatórios, informando a qualidade das águas do Estado de Minas Gerais. Para baixar os dados, mapas e relatórios de qualidade de água e conhecer o programa de monitoramento, acesse http://portalinfohidro.igam.mg.gov.br/monitoramento-de-qualidade-das-aguas.

2 INDICADORES DE QUALIDADE DA ÁGUAS

Neste Resumo é apresentada a avaliação da qualidade de água superficiais nos corpos hídricos do Estado de Minas Gerais por meio das medições realizadas na rede básica do Igam em 2019, além da análise da evolução da qualidade das águas ao longo da série histórica do monitoramento.

Foram considerados na avaliação anual os seguintes Indicadores: índice de Qualidade das águas - IQA, Contaminação por Tóxicos – CT, Índice de Estado Trófico – IET, análise da conformidade à legislação, Panorama de Qualidade das Águas, Densidade de Cianobactérias e Ensaios Ecotoxicológicos. Excepcionalmente, neste relatório não serão exibidos os resultados do índice biótico "BMWP", cuja avaliação passará a ser apresentada cada dois anos.

[#] Parâmetros analisados apenas em pontos específicos (Para mais informações acesse: https://bit.ly/2ofVRhL)

Os resultados dos indicadores - Índice de Qualidade das Águas (IQA), Contaminação por Tóxicos (CT) e Índice de Estado Trófico (IET) - nas águas superficiais, foram apresentados para todo o estado de Minas Gerais. Também é apresentado o cálculo da proporção dos percentuais de frequência de ocorrência dos resultados para cada faixa dos indicadores citados.

A Tabela 1 resume, para as principais bacias de Minas Gerais, o número de pontos de monitoramento de qualidade das águas superficiais existentes, o número de pontos para os quais foram atendidos os critérios para cálculos dos índices IQA, CT, IET e para as análises de densidade de cianobactérias e ensaios ecotoxicológicos.

Tabela 1: Número de estações monitoradas na Rede Básica e das utilizadas para o cálculo dos índices

Bacia Hidrográfica	N° de estações na Rede Básica	N° de estações com IQA	N° de estações com IET	N° de estações com CT	N° de estações com Densidade de cianobactérias	N° de estações com Ensaios Ecotoxicológicos
Bacias do Leste	9	9	9	9	5	6
Bacia do rio Grande	93	93	93	93	33	50
Bacia do rio Doce	65	65	65	65	28	13
Bacia do rio Jequitinhonha	49	49	49	49	11	8
Bacia do rio Mucuri	11	11	11	11	3	1
Bacia do rio Paraíba do Sul	44	44	44	44	8	7
Bacia do rio Paranaíba	51	51	51	51	16	27
Bacia do rio Pardo	7	6	6	6	2	1
Bacia dos Rios Itapemirim e Itabapoana	4	4	4	4	1	1
Bacia dos Rios Piracicaba e Jaguari	9	9	9	9	3	1
Bacia do Rio São Francisco	286	284	284	280	88	80
Total	628	625	625	621	198	195

2.1 Índice de Qualidade das Águas – IQA

O IQA foi desenvolvido pela National Sanitation Foundation dos Estados Unidos em 1970, através de pesquisa de opinião junto a vários especialistas da área ambiental. Cada especialista selecionou, a seu critério, os parâmetros relevantes para avaliar a qualidade das águas e estipulou, para cada um deles um peso relativo na série de parâmetros especificados.

O tratamento dos dados da mencionada pesquisa definiu um conjunto de nove (9) parâmetros considerados mais representativos para a caracterização da qualidade das águas: oxigênio dissolvido, coliformes termotolerantes, pH, demanda bioquímica de oxigênio, nitrato, fosfato total, variação da temperatura da água, turbidez e sólidos totais. A cada parâmetro foi atribuído um peso, conforme apresentado na Tabela 2, de acordo com a sua importância relativa no cálculo do IQA. Em 2013, o valor do parâmetro coliformes termotolerantes foi substituído pelo de *Escherichia coli* no cálculo desse indicador. Na ausência de um dos parâmetros coliformes termotolerantes/ *E. coli* e oxigênio dissolvido o IQA não foi calculado para aqueles pontos. E na ausência dos demais parâmetros, o IQA foi calculado considerando-se os valores dos oito parâmetros, sendo o peso do parâmetro faltante redistribuído entre os demais.

Tabela 2: Pesos atribuídos aos parâmetros para o cálculo do IQA.

Parâmetro	Peso – wi
Oxigênio dissolvido – OD (%ODSat)	0,17
Coliformes termotolerantes*(NMP/100mL)	0,15
рН	0,12
Demanda bioquímica de oxigênio – DBO (mg/L)	0,10
Nitratos (mg/L NO ₃ -)**	0,10
Fosfato total (mg/L PO ₄ -2)	0,10
Variação da temperatura (°C)	0,10
Turbidez (UNT)	0,08
Sólidos totais (mg/L)	0,08

^{*}Substituído por E. coli a partir de 2013

As metodologias para o cálculo do IQA consideram duas formulações, uma aditiva e outra multiplicativa. Neste trabalho, adota-se o IQA multiplicativo, ou seja, o produtório ponderado das qualidades de água correspondentes às variáveis que integram o índice utiliza o que é calculado pela seguinte equação:

$$IQA = \prod_{i=1}^{9} q_i^{w_i}$$

Onde:

IQA = Índice de Qualidade de Água, variando de 0 a 100;

q_i = qualidade do parâmetro i obtido através da curva média específica de qualidade;

 w_i = peso atribuído ao parâmetro, em função de sua importância na qualidade, entre 0 e 1.

Os resultados laboratoriais gerados, alguns deles utilizados no cálculo do IQA, são armazenados no Sistema de Cálculo de Qualidade da Água - SCQA, que também efetua o cálculo do indicador. Ressalta-se que, no âmbito do Programa Águas de Minas, para o cálculo do IQA considera-se o qs da variação de temperatura constante e igual a 92. Os valores do índice variam entre 0 e 100, conforme a Tabela 3.

Tabela 3: Classes do Índice de Qualidade da Água e seu Significado.

Valor do IQA	Classes	Significado
90 < IQA ≤ 100	Excelente	Águas apropriadas para tratamento
70 < IQA ≤ 90	Bom	convencional visando ao
50 < IQA ≤ 70	Médio	abastecimento público.
25 < IQA ≤ 50	Ruim	Águas impróprias para tratamento convencional visando ao
IQA ≤ 25	Muito Ruim	abastecimento público, sendo necessários tratamentos mais avançados.

Fonte: CETESB (2008) e IGAM (2012)

O IQA é particularmente sensível à contaminação por esgotos, sendo um índice de referência normalmente associado à qualidade da água bruta captada para o abastecimento público após o tratamento. Assim definido, o IQA reflete a interferência por esgotos domésticos e outros materiais orgânicos, nutrientes e sólidos.

2.2 Contaminação por Tóxicos - CT

A Contaminação por Tóxicos – CT avalia a presença de 13 substâncias tóxicas nos corpos de água, quais sejam: arsênio total, bário total, cádmio total, chumbo total, cianeto livre, cobre dissolvido, cromo total, fenóis totais, mercúrio total, nitrito, nitrato, nitrogênio amoniacal total e zinco total.

Os resultados das análises laboratoriais são comparados com os limites definidos nas classes de enquadramento dos corpos de água pelo Conselho Estadual de Política Ambiental – COPAM e Conselho Estadual de Recursos Hídricos de Minas Gerais - CERH-MG, na Deliberação Normativa Conjunta nº 01/08. A Tabela 4 apresenta as três faixas de classificação para o indicador Contaminação por Tóxicos, bem como o significado de cada uma delas.

Tabela 4: Classes da Contaminação por Tóxicos e seus significados.

Valor CT em relação à classe de enquadramento	Contaminação	Significado
Concentração ≤ 1,2 P	Baixa	Refere-se à ocorrência de substâncias tóxicas em concentrações que excedem em até 20% o limite de classe de enquadramento do trecho do corpo de água onde se localiza a estação de amostragem.
1,2 P < Concentração ≤ 2 P	Média	Refere-se à faixa de concentração que ultrapasse os limites mencionados no intervalo de 20% a 100%.
Concentração > 2P	Alta	Refere-se às concentrações que excedem em mais de 100% os limites.

Nota: Limite de classe definido na Deliberação Normativa Conjunta COPAM/CERH-MG nº 01/2008

A análise da Contaminação por Tóxicos foi baseada na avaliação da frequência de ocorrência dos resultados de 2019, considerando as estações de amostragem da rede básica de monitoramento distribuídas nas bacias hidrográficas do estado de Minas Gerais. A pior situação identificada no conjunto total de resultados das campanhas de amostragem, para qualquer parâmetro tóxico, define a faixa de contaminação do período em consideração. Portanto, se apenas um dos parâmetros tóxicos em uma dada estação de amostragem mostrar-se com valor acima de 100%, isto é, o dobro da sua concentração limite preconizada na Deliberação Normativa Conjunta COPAM/CERH-MG nº 01/2008, em pelo menos uma das campanhas do ano, a Contaminação por Tóxicos naquela estação de amostragem será considerada Alta no ano em análise.

2.3 Índice do Estado Trófico – IET

Segundo Esteves (1998), a eutrofização é o aumento da concentração de nutrientes, especialmente fósforo e nitrogênio, nos ecossistemas aquáticos, que tem como consequência o aumento de suas produtividades. Como decorrência deste processo, o ecossistema aquático passa da condição de oligotrófico e mesotrófico para eutrófico ou mesmo hipereutrófico.

O Índice de Estado Trófico (IET) tem por finalidade classificar corpos de água em diferentes graus de trofia, ou seja, avaliar a qualidade da água quanto ao enriquecimento por nutrientes e seu efeito relacionado ao crescimento excessivo do fitoplâncton. Os resultados correspondentes ao fósforo, IET(P), devem ser entendidos como uma medida do potencial de eutrofização, já que este nutriente atua como o agente causador do processo. A parte correspondente à clorofila-a, IET (CL), por sua vez, deve ser considerada como uma medida da resposta do corpo hídrico ao agente causador,

indicando de forma adequada o nível de crescimento do fitoplâncton devido ao enriquecimento de nutrientes.

Consideram-se diferentes equações para se avaliar os resultados do fósforo total e da clorofila-a nos ambientes lênticos e lóticos.

O crescente aumento dos níveis de clorofila-a e nutrientes, especialmente de fósforo total, nos corpos de água monitorados no Estado tem alertado para o desenvolvimento de estudos que contribuam para um melhor entendimento da relação causa-efeito entre os processos produtivos e seu impacto ambiental em ecossistemas aquáticos. Portanto, a partir do ano de 2008, o Programa Águas de Minas passou a utilizar o IET para contribuir na avaliação da qualidade das águas.

Para o cálculo do Índice do Estado Trófico, foram aplicadas apenas a clorofila-a e o fósforo total, uma vez que os valores de transparência muitas vezes não são representativos do estado de trofia, pois esta pode ser afetada pela elevada turbidez decorrente de material mineral em suspensão e não apenas pela densidade de organismos planctônicos, além de muitas vezes não se dispor desses dados. Desse modo, a transparência foi desconsiderada no cálculo do IET adotado pelo Programa Águas de Minas. Para a classificação deste índice em rios são adotados os estados de trofia apresentados na Tabela 5.

Tabela 5: Classes do Índice de Estado Trófico (rios) e seu significado.

Valor IET	Classes	Significado
IET ≤ 47	Ultraoligotrófica	Corpos de água limpos, de produtividade muito baixa e concentrações insignificantes de nutrientes que acarretam em prejuízos aos usos da água.
47 < IET ≤ 52	Oligotrófica	Corpos de água limpos, de baixa produtividade, em que não ocorrem interferências indesejáveis sobre o uso da água, decorrentes da presença de nutrientes.
52 < IET ≤ 59	Mesotrófica	Corpos de água com produtividade intermediária, com possíveis implicações sobre a qualidade de água, em níveis aceitáveis, na maioria dos casos.
59 < IET ≤ 63	Eutrófica	Corpos de água com alta produtividade em relação às condições naturais, com redução da transparência, em geral afetados por atividades antrópicas, nos quais ocorrem alterações indesejáveis na qualidade da água decorrentes do aumento da concentração de nutrientes e interferências nos seus múltiplos usos.
63 < IET ≤ 67	Supereutrófica	Corpos de água com alta produtividade em relação às condições naturais, de baixa transparência, em geral afetados por atividades antrópicas, nos quais ocorrem com frequência alterações indesejáveis na qualidade da água, como a ocorrência de episódios de florações de algas, e interferências nos seus múltiplos usos.
IET > 67	Hipereutrófica	Corpos de água afetados significativamente pelas elevadas concentrações de matéria orgânica e nutrientes, com comprometimento acentuado nos seus usos, associado a episódios de florações de algas ou mortandades de peixes, com consequências indesejáveis para seus múltiplos usos, inclusive sobre as atividades pecuárias nas regiões ribeirinhas.

Fonte: Cetesb (2008)

O IET foi calculado mediante os resultados obtidos de fósforo e clorofila-a no ano de 2019, em 628 estações. Para o IET anual, calcularam-se as médias, considerando-se apenas as estações que apresentaram no mínimo dois resultados em 2019.

2.4 Panorama da Qualidade das Águas Superficiais

O Panorama da Qualidade das Águas Superficiais, que reflete as violações dos padrões legais de qualidade de qualidade das águas, consiste na avaliação de cada estação de amostragem e o cumprimento da Deliberação Normativa Conjunta COPAM/CERH-MG 01/08 por meio da avaliação dos resultados de três grupos de parâmetros: indicativo de

enriquecimento orgânico, indicativo de contaminação fecal e indicativo de contaminação por substâncias tóxicas. Cada um dos indicativos é composto por parâmetros prédefinidos:

- **Indicativo de enriquecimento orgânico**: fósforo total, demanda bioquímica de oxigênio (DBO), nitrato e nitrogênio amoniacal total;
- Indicativo de contaminação fecal: Escherichia coli;
- Indicativo de contaminação por substâncias tóxicas: arsênio total, cianeto livre, chumbo total, cobre dissolvido, zinco total, cromo total, cádmio total, mercúrio total e fenóis totais.

Para realizar a análise dos três tipos de indicativos foi avaliada, primeiramente, a conformidade dos parâmetros em cada estação de monitoramento nas medições realizadas nas CH no ano de 2019. Dessa forma, os resultados analíticos referentes aos parâmetros monitorados nas águas superficiais, citados acima, foram confrontados com os limites definidos na Deliberação Normativa Conjunta COPAM/CERH-MG nº 01/2008 de acordo com as respectivas classes de enquadramento.

Considerou-se que, se pelo menos um determinado parâmetro estivesse em desacordo com os limites da legislação, o indicativo de contaminação ao qual o parâmetro se refere seria considerado em desconformidade no ano de 2019. Para as estações de amostragem que possuem monitoramento mensal a pior situação identificada no conjunto total dos resultados dos parâmetros define a situação do indicativo do período em consideração.

A coloração vermelha, no local selecionado para a representação do indicativo (1, 2 ou 3, de acordo com a legenda no mapa), representa a desconformidade para algum dos parâmetros avaliados e a azul indica que todos os parâmetros avaliados estiveram em conformidade.

Confome versões anteriores do Relatório Executivo, também, foi realizada a análise da conformidade à legislação. Foram considerados os resultados do ano 2019 para as estações de amostragem do Estado de Minas Gerais, e avaliados os parâmetros monitorados em relação ao percentual de amostras cujos valores violaram os limites legais da Deliberação Normativa COPAM/CERH-MG Nº 01/08 para as respectivas classes de enquadramento.

2.5 Densidade de Cianobactérias

As cianobactérias são micro-organismos presentes em ambientes aquáticos e algumas espécies são capazes de produzir toxinas que podem ser prejudiciais à saúde humana e animal. Frente à sua importância para a qualidade de água e saúde pública e ao objetivo de manter a consonância entre os parâmetros monitorados e a legislação vigente, a avaliação da densidade de cianobactérias foi incluída no monitoramento da qualidade das águas do Estado de Minas Gerais a partir de janeiro de 2007. Para tanto, foi definida uma rede de monitoramento que priorizasse locais em que predominam condições potencialmente propícias ao desenvolvimento de florações de cianobactérias. Atualmente essa rede conta com 190 estações de amostragem.

Os resultados máximos das análises laboratoriais foram comparados a padrões estabelecidos na Deliberação Normativa Conjunta COPAM/CERH-MG nº 01/08 para cada classe de uso de recreação: 10.000 cel/mL para águas adequadas à recreação de contato primário, 50.000 cel/mL para as de recreação de contato secundário e usos de classe 2, 100.000 cel/mL também para recreação de contato secundário e para usos classe 3 e acima de 100.000 cel/mL, inadequado para qualquer contato com a água e adequado apenas aos usos de classe 4. Além desses,foram discriminados resultados máximos abaixo de 1.000 cél/mL, considerando-se-os de baixo risco para contato primário.

Para facilitar a visualização dos resultados, os mesmos foram divididos em cinco intervalos de valores, como ilustrado na Tabela 6. O resultado de cada estação de monitoramento apresentado no mapa anual refere-se à pior condição verificada nas medições realizadas em 2018.

Tabela 6: Classes das densidades de cianobactérias.

Densidade de Cianobactérias (céls/mL)	Significados
<1000	Adequado à Classe 1 e baixo risco para recreação de contato primário
≥1.000 e <10.000	Adequado à Classe 1 e à recreação de contato primário 1
≥10.000 e <50.000	Adequado à recreação de contato secundário , isto é, com reduzida probabilidade de ingestão de água ² . Inadequado à recreação de contato primário.
≥50.000 e <100.000	Adequado à Classe 3 e à recreação de contato secundário.3
≥100.000	Adequado à Classe 4, inadequado para qualquer tipo de recreação . ⁴

Fonte: Igam (201

2.6 Ensaios Ecotoxicológicos

Os Ensaios de Ecotoxicidade consistem na determinação do potencial tóxico de um agente químico ou de uma mistura complexa, sendo os efeitos desses poluentes detectados através da resposta de organismos vivos.

Com ampla utilização nos países desenvolvidos e em uso em alguns estados do Brasil, os testes de toxicidade complementam a metodologia tradicionalmente adotada através de padrões de emissão e de qualidade para controle de poluição das águas. Estes testes são ferramentas importantes para a melhor compreensão dos impactos das atividades econômicas sobre um dado corpo de água. Esse ensaio foi inserido no Programa Águas de Minas a partir da terceira campanha de 2001, visando aprimorar as informações referentes à toxicidade causada pelos lançamentos de substâncias tóxicas nos corpos de água. Os Ensaios Ecotoxicológicos foram realizados em 194 estações da rede básica de monitoramento, inicialmente focado nos impactos de agrotóxicos.

No Ensaio de Ecotoxicidade Crônica, o organismo aquático utilizado é o microcrustáceo *Ceriodaphnia dubia*. São utilizadas as denominações Efeito Agudo, Efeito Crônico e Não Tóxico, para descrever os eventuais efeitos deletérios sobre os organismos aquáticos. O Efeito Agudo é caracterizado por uma resposta severa e rápida a um estímulo, a qual se manifesta nos organismos aquáticos em tempos relativamente curtos (0 a 48 horas), sendo o efeito morte o mais observado, podendo-se também notar letargia nas espécies amostradas. O Efeito Crônico caracteriza-se pela resposta a um estímulo que continua por longos períodos (1/10 do ciclo vital até a totalidade da vida) de exposição do organismo ao poluente, que pode ser expressa através de mudanças comportamentais, alterações fisiológicas, genéticas, reprodução, etc.

¹ Art. 13, II, "a", 4 da DN Conjunta Copam-CERH nº1 de 2008

² Idem

³ Art. 2°, XXXI c/c 4° IV, "d", c/c art. 15, II, 3, ibidem

⁴ Art. 4⁰, V e incisos, ibidem.

2.7 Avaliação dos dados de vazão e cargas de DBO e fósforo total

Para as estações de monitoramento que possuem medição simultânea de vazão foi realizada uma avaliação integrada dos dados de qualidade e de quantidade. Os dados de vazão são coletados semestralmente.

Foram calculadas e analisadas as cargas de DBO e fósforo total para todas as estações com medição simultânea de vazão, para o ano de 2019. As cargas foram calculadas multiplicando-se os valores de concentração desses parâmetros pela vazão registrada no dia da coleta, com os devidos ajustes dimensionais.

3 AVALIAÇÃO DA ANOMALIA DE PRECIPITAÇÃO TRIMESTRAL NO ANO DE 2019

Associado ao monitoramento de qualidade das águas avaliou-se também a precipitação em Minas Gerais, por trimestre, com o intuito de verificar a sua influência nos resultados dos indicadores de qualidade das águas.

O diagnóstico da precipitação foi realizado pelo Sistema de Meteorologia e Recursos Hídricos de Minas Gerais – SIMGE, do Instituto Mineiro de Gestão das Águas – Igam, com base nas estações meteorológicas convencionais da rede de observação de superfície do Instituto Nacional de Meteorologia – INMET.

A análise foi realizada considerando o ano civil de 2019, ou seja, entre janeiro e dezembro de 2019, divididos nos intervalos trimestrais: JFM, AMJ, JAS e OND.

Nas quatro figuras a seguir são apresentados dois mapas referentes a cada um dos trimestres JFM, AMJ, JAS e OND. O primeiro mapa de cada figura apresenta a Climatologia da precipitação em Minas Gerais, conforme a nova Normal Climatológica (climatologia) do Instituto Nacional de Meteorologia – INMET, para o período de 1981-2010. Já o segundo mapa de cada figura apresenta a anomalia da precipitação observada em cada trimestre, no ano de 2019.

A anomalia de precipitação é a variação da chuva observada (para mais ou para menos) tendo como referência a Normal climatológica. A anomalia positiva de chuvas ocorre quando é observada precipitação acima da climatologia. Por outro lado, a anomalia negativa ocorre quando é observada precipitação abaixo da climatologia. A climatologia utilizada ilustra os valores das Normais climatológicas das chuvas publicadas pelo INMET, com referência aos 30 anos entre 1981-2010.

A distribuição espacial da anomalia através destes campos permite a observação do comportamento espacial dela, dado que as anomalias podem se comportar diferentemente mesmo dentro de uma mesma porção geográfica.

O branco nas figuras a seguir indica as áreas em que se observou precipitação em torno da climatologia. Já as cores em tons azuis representam as áreas nas quais ocorreram anomalias positivas. As áreas preenchidas em cores quentes representam as áreas de anomalias negativas. Os valores são dados em porcentagem.

O trimestre JFM marca o final do período chuvoso do ano hidrológico corrente. É caracterizado, climatologicamente, pela ocorrência de chuvas que variam entre valores de 300 mm a 800 mm, com as maiores precipitações ocorrendo no setor centro-sul do estado e diminuindo em direção ao norte/nordeste (Figura 6a). Verifica-se que a anomalia na precipitação ocorrida no primeiro trimestre (JFM) de 2019, exibido na Figura 6b, foi predominantemente negativa em quase todo o estado. Apenas em poucas áreas isoladas no SF8, SF6, SF3, PN2, GD2, GD5 e PJ1 os valores observados ficaram próximos à climatologia. Os piores quantitativos do trimestre ocorreram em áreas do JQ2, JQ3, DO4, DO5, DO6 E PS2. Nessas CHs a precipitação ocorrida ficou entre 30 e 40% abaixo da climatologia.

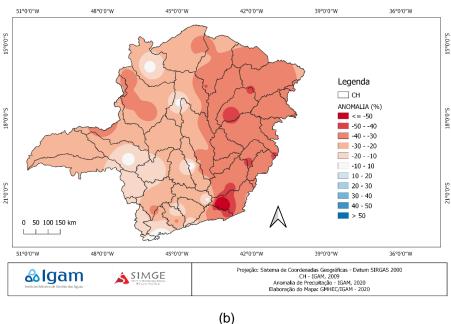

Uma característica muito importante observada nesse primeiro trimestre de 2019 foi o cenário ocorrido no mês de janeiro, que é o mês mais importante na contabilização da chuva total do trimestre. Em janeiro de 2019 estabeleceu-se sobre o estado um padrão de bloqueio atmosférico, que impediu o avanço de sistemas frontais, o que teve impacto direto na ocorrência de precipitações em Minas Gerais resultando nos registros de baixos acumulados de precipitação e, portanto, de anomalias negativas.

Figura 6: Distribuição espacial da precipitação no trimestre JFM: (a) Normal Climatológica 1980-2010; (b) anomalia observada em 2019.

Climatologia de Precipitação - Trimestre JAN/FEV/MAR 51°0′0″W 45°0′0″W 42°0′0″W 15°0′0″S 15°0′0″S Legenda ☐ CH PRECIPITAÇÃO (mm) 18°0'0"S <= 350 350 - 400 400 - 450 450 - 500 500 - 550 550 - 600 600 - 650 50 100 150 km 48°0′0″W 36°0′0″W Projeção: Sistema de Coordenadas Geográficas - Datum SIRGAS 2000 CH - IGAM, 2009 Total de Precipitação - IGAM, 2020 Elaboração do Mapa: GMHEC/IGAM - 2020 SIMGE & Igam

Anomalia de precipitação trimestral - JAN/FEV/MAR de 2019

(a)

O segundo trimestre (AMJ), é o primeiro trimestre do período seco no estado. Climatologicamente, as chuvas computadas ao final do trimestre em Minas Gerais variam entre valores de 40 mm a 200 mm (Figura 7a). Conforme exibido na Figura 7b, em 2019 observa-se ocorrência de anomalias predominantemente positivas em grande

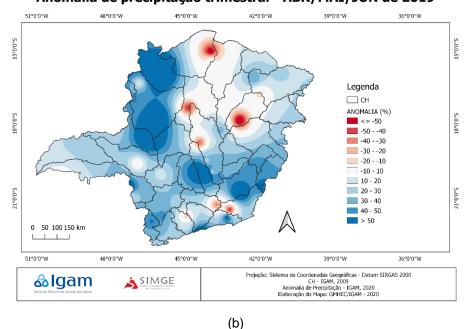
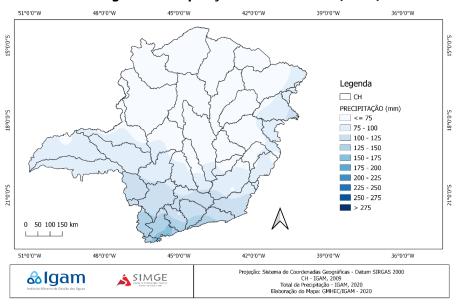

parte do estado. No SF2, SF3, SF4, SF7, SF8, GD6, GD7, PS1 e DO1 ocorreram as anomalias mais positivas. Nessas CHs as anomalias foram 50% superiores à média histórica. Por outro lado, no SF6, SF9, JQ2 E PS2 as anomalias ficaram até 50% abaixo da média. Aqui cabe explicar que essas chuvas não foram bem distribuídas ao longo dos três meses, mas sim ocorreram em sua maior parte no mês de abril, que se apresentou anomalamente acima da média.

Figura 7: Distribuição espacial da precipitação no trimestre AMJ: (a) Normal Climatológica 1981-2010; (b) anomalia observada em 2019.

Climatologia de Precipitação - Trimestre ABR/MAI/JUN 51°0′0″W 45°0′0″W 42°0′0″W 15°0′0″S Legenda CH PRECIPITAÇÃO (mm) 18°0'0"5 <= 75 75 - 100 100 - 125 125 - 150 150 - 175 175 - 200 200 - 225 225 - 250 21°0′0″S 250 - 275 > 275 50 100 150 km 48°0′0"W 36°0′0″W Projeção: Sistema de Coordenadas Geográficas - Datum SIRGAS 2000 CH - IGAM, 2009 Total de Presipitação - IGAM, 2020 Elaboração do Mapa: GMHEC/IGAM - 2020 SIMGE & Igam

Anomalia de precipitação trimestral - ABR/MAI/JUN de 2019

(a)



O terceiro trimestre (JAS) é o segundo trimestre do período seco, que é também climatologicamente o pior trimestre do ano na contribuição de chuvas, já que as precipitações totais no estado nesse período variam entre 10 mm e 150 mm, conforme Figura 8a. Em 2019, exibido na Figura 8b, esse trimestre se apresentou ainda pior do

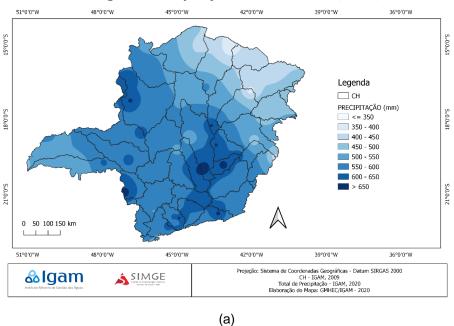
que a climatologia, com anomalias negativas em grande parte do estado. No SF3, SF5, SF7, SF8, SF9 e SF10, PN1, PS2, DO1, DO5 e DO6 as anomalias foram superiores a 50%.

Figura 8: Distribuição espacial da precipitação no trimestre JAS: (a) Normal Climatológica 1980-2010; (b) anomalia observada em 2019.

Climatologia de Precipitação - Trimestre JUL/AGO/SET

(a)

Anomalia de precipitação trimestral - JUL/AGO/SET de 2019


(b)

O quarto trimestre (OND) marca o início do período chuvoso do ano hidrológico subsequente em Minas Gerais. Nesse trimestre as precipitações, conforme **Erro! Fonte de referência não encontrada.** climatológica variam entre 350 mm e 700 mm em Minas, conforme Figura 9a. Para 2019, conforme exibido na Figura 9b, o que se observa é que o último trimestre do ano se caracterizou por anomalias negativas de precipitação em todo o estado pelo menos 20 a 30% abaixo da climatologia. As anomalias negativas

chegaram ficar 50% inferiores à climatologia em grande parte do território do SF9, SF10, PA1 e JQ3.

Figura 9: Distribuição espacial da precipitação no trimestre OND: (a) Normal Climatológica 1981-2010; (b) valores observados em 2019.

Anomalia de precipitação trimestral - OUT/NOV/DEZ de 2019

Diante dos resultados mostrados, pode-se afirmar que 2019 foi um ano classificado como seco a extremamente seco em Minas. Isso reflete a má qualidade das chuvas ocorridas nos dois trimestres de maior contribuição pluviométrica, JFM e OND, sendo o mês de janeiro o que mais contribuiu com esse resultado devido às poucas precipitações registradas.

4 AVALIAÇÃO DA QUALIDADE DAS ÁGUAS EM 2019

A avaliação da qualidade das águas superficiais apresentada neste Resumo Executivo baseia-se nos resultados dos indicadores calculados para a Rede Básica de monitoramento operada pelo Igam nas bacias hidrográficas dos rios mineiros em 2019.

Serão apresentados os percentuais de frequência de ocorrência dos indicadores: Índice de Qualidade das Águas (IQA), Contaminação por Tóxicos (CT) e Índice de Estado Trófico (IET), análise da conformidade à legislação, Panorama de Qualidade das Águas, Densidade de Cianobactérias, Ensaios Ecotoxicológicos" e avaliação de dados de vazão e cargas de DBO e fósforo total. De modo geral, são apresentados os resultados da série histórica de monitoramento e os valores de 2019 comparados aos de 2018.

4.1 Índice de Qualidade das Águas - IQA

Os resultados apresentados no monitoramento da qualidade das águas em Minas Gerais, realizado pelo Instituto Mineiro de Gestão das Águas (Igam), apontaram no ano de 2019 predominância da condição da qualidade de água satisfatória (IQA Médio), seguido de qualidade boa (IQA Bom), com registro de 49% e 31% de ocorrências, respectivamente. A condição ruim (IQA Ruim) foi identificada em 18% das medições realizadas. Já as faixas de IQA Muito Ruim e Excelente, que indicam os extremos da faixa, representaram 0,8% e 1,2% dos resultados, respectivamente. Esse comportamento vem sendo observado ao longo da série histórica de monitoramento, como mostrado na Figura 6.

De maneira geral, verificou-se em 2019 uma pequena melhora na qualidade das águas no Estado de MG, segundo o IQA, em relação aos resultados observados em 2018. Houve um aumento da ocorrência do IQA Bom que passou de 29% em 2018 para 31% em 2019 e predominância do IQA Médio, que reduziu de 50% em 2018 para 49% no ano seguinte (Figura 5). A análise revelou, ainda, que a ocorrência de IQA Muito Ruim reduziu, passando de 1,1% de ocorrência em 2018 para 0,8% em 2019, e as ocorrências de IQA Ruim também reduziram, passando de 19% em 2018 para 18% em 2019. Ressalta-se que a ocorrência de resultados na faixa Excelente aumentou de 0,5% em 2018 para 1,2% de ocorrência em 2019, concentrando-se, nas bacias do rio São Mateus, rio Jequitinhonha, rio Doce e rio São Francisco.

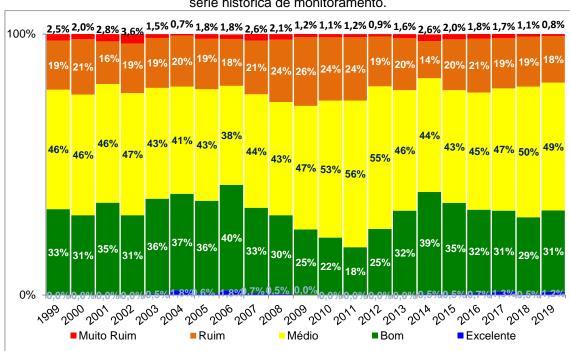


Figura 6: Frequência de ocorrência do IQA trimestral no estado de Minas Gerais ao longo da série histórica de monitoramento.

Fonte: Elaborado pelos autores (2021)

Verificando os percentuais de variação das faixas de IQA entre os anos de 2018 e 2019, observou-se melhoria da qualidade das águas das bacias hidrográficas dos rios Itaúnas, Jucuruçu, Pardo, Mucuri, Doce, Paraíba do Sul e São Francisco, conforme pode ser observado na Figura 11. Em contrapartida registrou-se piora na qualidade das águas na maioria das bacias do estado de Minas Gerais: bacias dos rios Itapemirim, Itanhém, Buranhém, Peruípe, São Mateus, Jequitinhonha, Grande e Piracicaba. Destaca-se que na bacia do São Mateus, apesar de verificada o aparecimento das ocorrências de IQA Excelente (12,5% em 2019) ocorreu diminuição das ocorrências de IQA Bom (passando de 29% em 2018 para 13% em 2019) e a apariação de IQA Ruim (13% em 2019).

Na avaliação dos resultados de IQA de 2019 das bacias de Minas Gerais (Figura 7) observa-se que as melhores condições de IQA ocorreram nas bacias dos rios Jucuruçu, Jequitinhonha e Paranaíba, onde foram registradas os maiores percentuais de IQA Bom, com respectivamente 63%, 53% e 47% de ocorrências. Em contrapartida, as piores condições foram registradas nas bacias dos Rios Itapemirim, Itaúnas, Peruípe, São Francisco e Grande, as quais apresentaram os maiores percentuais de IQA Ruim. Ressalta-se que o maior registro de IQA Muito Ruim ocorreu na bacia do rio São Francisco, com 1,3% de ocorrência.

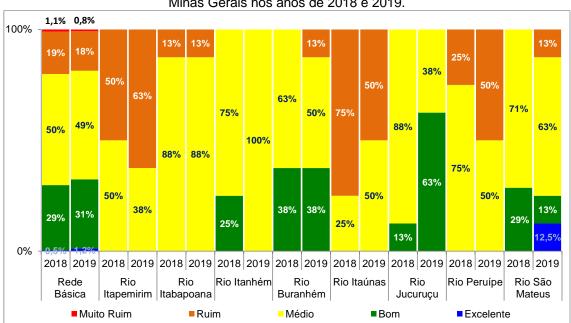
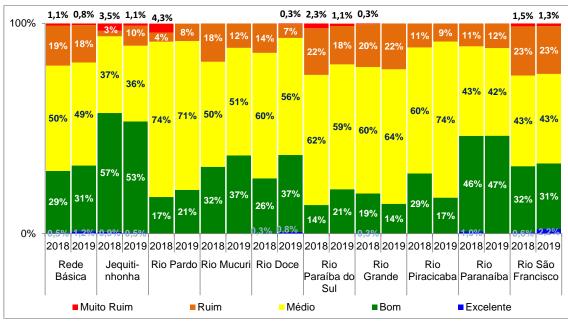



Figura 7: Frequência de ocorrência do IQA trimestral nas bacias hidrográficas do estado de Minas Gerais nos anos de 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

Na Figura 8 são apresentadas as frequências de ocorrências do IQA trimestral nas subbacias do rio São Francisco nos anos de 2018 e 2019. As sub-bacias do São Francisco que apresentaram as melhores condições de qualidade, em 2019, foram as dos rios Paracatu (SF7), Urucuia (SF8) e Pandeiro e Calindó (SF9), as quais apresentaram mais da metade dos resultados nas melhores faixas de IQA (Excelente e Bom). Destaque para as CH SF4, SF8 e SF9 que registraram os maiores percentuais de IQA Excelente, com respectivamente 9,1%, 9,0% e 10,8% de ocorrências.

Já as sub-bacias do rio das Velhas (SF5), rio Verde Grande (SF10) e rios Jequitaí e Pacuí (SF6) apresentaram os maiores percentuais de ocorrência nas piores faixas de IQA (Ruim e Muito Ruim), representando as piores condições da bacia do rio São Francisco. Destaque para a bacia dos rios Jequitaí e Pacuí (SF6) que apresentou 7,5% dos resultados de IQA na condição Muito Ruim.

A calha do rio São Francisco, representado na Figura 12, apresentou metade das amostras com IQA considerado médio e 4% no nível Ruim. Observa-se a ocorrência de IQA na faixa Excelente (2,6% dos resultados) no ano de 2019. Não houve registros de resultados de IQA no nível Muito Ruim para este corpo de água.

Percentual de Ocorrência de IQA UEG Rio São Francisco 2018-2019 0,9% 0,9% 1.4% 1,0% 2,8% 2,0% 3,0% 100% 38% 34% 50% 36% 37% 53% 34% 38% 43% 35% 58% 44% 32% 33% 46% 40% 39% 50% 42% 50% 51% 52% 28% 45% 43% 40% 35% 36% 28% 25% 25% 23% 18% 16% 0% 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 SF2 SF9 SF10 Rio São SF3 SF4 SF₅ SF₆ SF7 SF8 Francisco (Calha) ■ Muito Ruim ■ Ruim Médio ■ Bom Excelente

Figura 8: Frequência de ocorrência do IQA trimestral nas sub-bacias do rio São Francisco nos anos de 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

Na Figura 9 é apresentado o mapa com a distribuição da ocorrência do IQA médio anual obtido no ano de 2019 (média dos quatro trimestres) nas estações de amostragem do Estado de Minas Gerais. É possível verificar espacialmente a predominância de IQA Regular ou Médio em todo o estado.

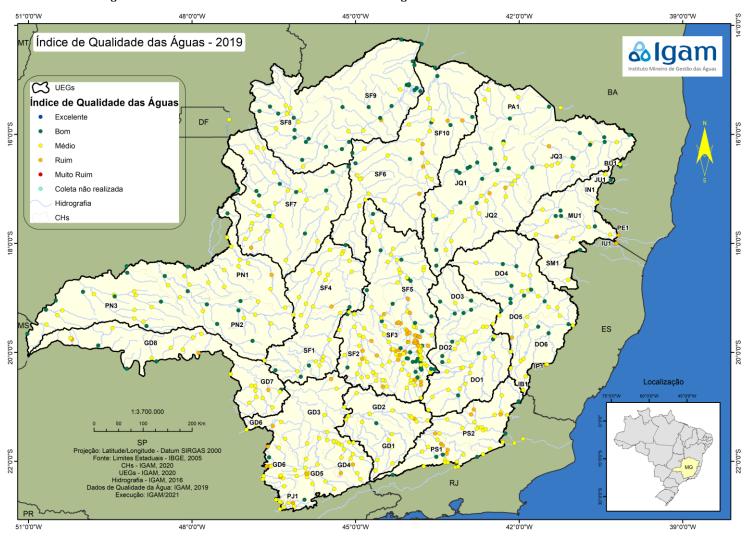


Figura 9: Média anual do Índice de Qualidade da Água no Estado de Minas Gerais em 2019.

Na Tabela 7 são listados os trechos de corpos hídricos que apresentaram a pior condição de qualidade de água no Estado de Minas Gerais, que se refere à ocorrência de IQA Muito Ruim em pelo menos uma campanha do ano, o que acarretou em IQA Muito Ruim ou Ruim na média anual de 2019.

Tabela 7: Corpos de água que apresentaram as piores condições de IQA no ano de 2019 no Estado de Minas Gerais.

			Estado de Ivilhas Ge	Taio.				
Curso D'água	Município	Estação	Parâmetros Influenciaram no IQA RUIM ou MUITO RUIM	1º Trim	2º Trim	3º Trim	4º Trim	Média anual
Ribeirão Serra Azul	Juatuba	BP069	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo.	57,6	58,3	58,9	23,1	49,5
Ribeirão Ibirité	Ibirité	BP081	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo, Turbidez.	26,5	45,2	22,2	26,1	30
Rio Xopotó (PS2)	Visconde Do Rio Branco	BS077	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo.	20,1	26,9	22,4	30,7	25
Ribeirão Arrudas	Sabará	BV155	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo.	32,5	35	24,5	26,6	29,6
Ribeirão São Pedro (JQ3)	Medina	JE029	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo.	36,1	20,2	23,6	27,7	26,9
Rio São João (SF2)	Itaúna	PA009	Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo.	34,5	35,5	41,7	24,1	34
Rio Caratinga	Caratinga	RD056	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo, Turbidez.	44,5	24,4	39,1	25,3	33,3
Córrego Caeté	Caeté	SC03	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo.	35,4	30,5	28,3	18,1	28,1
Ribeirão da Mata	Pedro Leopoldo	SC23	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo.	42	47	36,4	22	36,8
Ribeirão Jequitibá	Prudente De Morais	SC24	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo.	40,7	43	36,7	22,7	35,8
Ribeirão do Matadouro	Sete Lagoas	SC26	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo.	29,8	38,6	18,4	33,9	30,2
Rio Guavanipã	Bocaiúva	SFC001	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Fósforo, Turbidez.	19,8	18,8	24,1	51	28,4
Ribeirão dos Vieiras ou Rio dos Vieiras	Montes Claros	VG003	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo, Turbidez.	34,1	33,1	35,7	21,1	31
Rio Verde Grande	Capitão Enéas, Montes Claros	VG004	%OD Saturado, Coliformes Termotolerantes/Escherichi a coli, DBO, Nitrato, Fósforo, Turbidez.	23,6	31,9	63,2	47,6	41,6

A ocorrência de IQA Muito Ruim e Ruim constatada nesses corpos de água está associada, principalmente, aos lançamentos de esgotos sanitários dos municípios presentes nessas regiões.

A estação de monitoramento no rio Xopotó a jusante de Visconde do Rio Branco (BS077) foi a única que apresentou na média anual IQA Muito Ruim. A condição do IQA nesse corpo hídrico pode ser associada aos efluentes industriais (alimentícias, laticínios, rações, móveis, tinturarias, abate de animais, vernizes), além da extração de pedras e argila. Essas atividades contribuem com o aporte de nutrientes, matéria orgânica e sólidos para o corpo de água.

4.2 Contaminação por Tóxicos - CT

Com relação à Contaminação por Tóxicos, observa-se predominância de ocorrência de CT Baixa ao longo de toda a série histórica (Figura 10). Desde 2005 esta condição representa mais de 80% das amostras anuais. No ano de 2019 a CT Alta representou 10% dos resultados, seguida da Média com 5% de ocorrências.

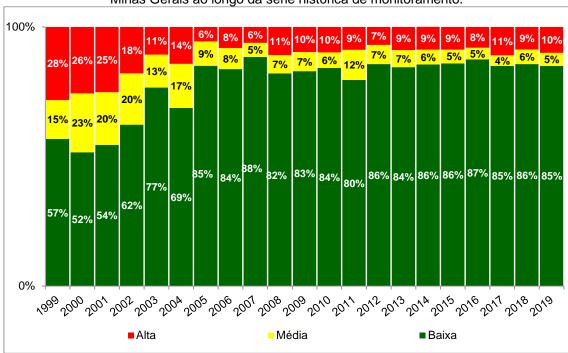


Figura 10: Frequência de ocorrência da Contaminação por Tóxicos nas bacias do estado de Minas Gerais ao longo da série histórica de monitoramento.

Fonte: Elaborado pelos autores (2021)

Na Figura 11 são apresentadas as frequências de ocorrências da CT trimestral nas bacias de Minas Gerais nos anos de 2018 e 2019. Observou-se melhoria em termos de contaminação das águas com relação às frequências de ocorrência da CT nas bacias dos rios Itapemirim, Itabapoana, Itanhém, São Mateus e Doce. Destacam-se as bacias dos rios Buranhém, Itaúnas, Jucuruçu, Peruípe, Pardo e Piracicaba que apresentaram CT Baixa em 100% das amostragens realizadas em 2018 e 2019. Por outro lado, constatou-se piora em relação à CT na bacia do rio Paraíba do Sul, Grande, Paranaíba, São Francisco, Jequitinhonha e Mucuri, com aumento dos registros de resultados na faixa de CT Alta e/ou CT Média em 2019, quando comparado a 2018. As maiores

porcentagens de ocorrência de CT Alta foram observadas nas bacias dos rios São Francisco e Paraíba do Sul, onde foram registradas respectivamente, 17% e 15% de CT Alta no ano em questão.

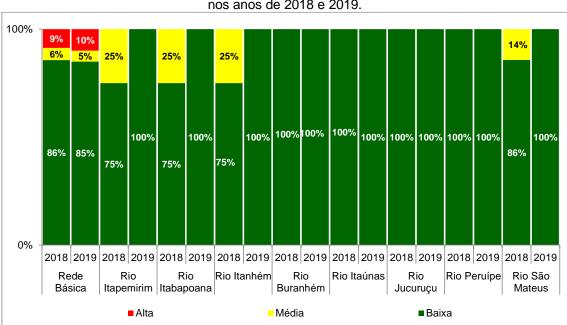
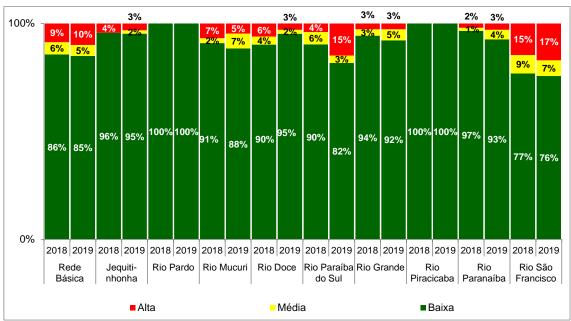



Figura 11: Frequência de ocorrência da Contaminação por tóxicos no estado de Minas Gerais nos anos de 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

Em relação às sub-bacias do rio São Francisco as melhores condições registradas para a CT foram registradas no rio Urucuia (SF8) que apresentou 100% dos resultados na condição de CT Baixa e nos rios Pandeiro/Calindó (SF9) que apresentaram 97% dos resultados na condição de CT Baixa (Figura 12). Já as piores condições foram observadas no rio das Velhas (SF5) e no rio Pará (SF2), onde 35% e 20% dos resultados estiveram na condição de CT Alta. Ressalta-se que a sub-bacia do rio das Velhas também esteve entre as piores condições da bacia do rio São Francisco, com relação

ao IQA. Esses resultados refletem os impactos dos grandes centros urbanos da Região Metropolitana de Belo Horizonte, sobre os corpos de água que drenam estas regiões.

Percentual de Ocorrência de CT Bacia Rio São Francisco 2018-2019 1% 100% 9% 11% 11% 13% 20% 6% 6% 29% 9% 35% 13% 7% 16% 12% 100% 95% 97% 96% 93% 88% 86% 85% 83% 79% 75% 73% 56% 53% በ% 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 SF2 Rio São SF1 SF3 SF4 SF5 SF6 Francisco (Calha) Alta Média ■ Baixa

Figura 12: Frequência de ocorrência da Contaminação por tóxicos nas sub-bacias do rio São Francisco nos anos de 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

O mapa com o resultado anual da Contaminação por Tóxicos obtido em 2019 é apresentado na Figura 13. Observa-se espacialmente a predominância da contaminação Baixa em todo o estado. Também se observa que a contaminação Média apresenta-se dispersa em pontos de praticamente todas as bacias hidrográficas. Já a contaminação Alta ocorre principalmente a jusante de grandes centros urbanos como a Região Metropolitana de Belo Horizonte (RMBH), em toda a extensão do rio das Velhas, além das bacias do rio Paraopeba, rio Pará, rios Pomba e Muriaé, baixo rio Paranaíba e afluentes do rio Verde Grande. Essa condição é favorecida pela presença de áreas urbanas, indústrias, mineração e uso de insumos agrícolas nessas regiões.

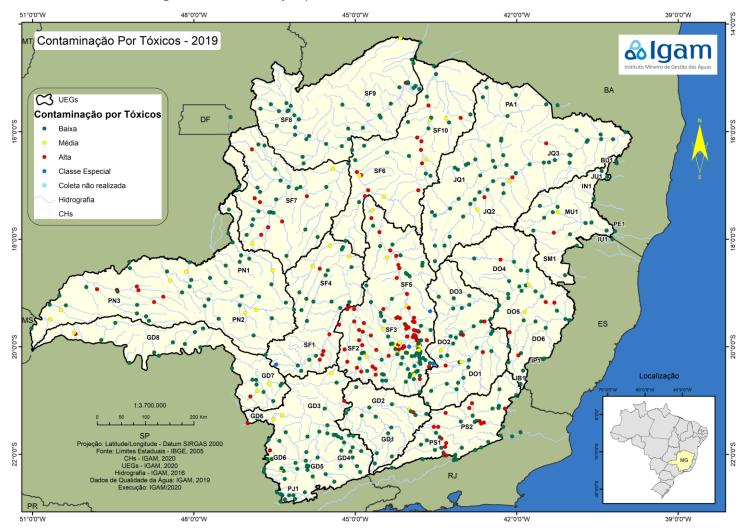


Figura 13: Contaminação por tóxicos no Estado de Minas Gerais em 2019.

Na Tabela 8 são listados os corpos de água que apresentaram as piores condições em relação a contaminação por tóxicos - CT em Minas Gerais no ano de 2019- corresponde ao registro de CT Alta nas quatro campanhas realizadas no ano de 2019. Vale destacar que das dezenove estações listadas doze encontram-se na bacia hidrográfica do rio das Velhas.

Tabela 8: Corpos de água que apresentaram as piores condições de CT em Minas Gerais no ano de 2019.

Estação	Curso d'Água	Município	Parâmetros CT Alta	1º Trim	2º Trim	3º Trim	4º Trim	CT anual
AV320	Córrego da Mina	Raposos	Arsênio Total, Cobre, Zinco Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BP073	Ribeirão das Areias ou Riacho das Pedras	Betim	Nitrogênio Amoniacal Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BP081	Ribeirão Ibirité	Ibirité	Nitrogênio Amoniacal Total, Chumbo Total, Cianeto.	ALTA	ALTA	ALTA	ALTA	ALTA
BS017	Rio Paraibuna	Juiz de Fora	Nitrogênio Amoniacal Total, Cádmio Total, Cianeto, Zinco Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BS083	Rio Paraibuna	Juiz de Fora	Cádmio Total, Cianeto, Zinco Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV062	Ribeirão Água Suja	Nova Lima	Nitrogênio Amoniacal Total, Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV141	Rio das Velhas	Santana de Pirapama	Nitrogênio Amoniacal Total, Arsênio Total, Chumbo Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV142	Rio das Velhas	Inimutaba, Presidente Juscelino	Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV146	Rio das Velhas	Augusto de Lima, Corinto	Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV148	Rio das Velhas	Várzea da Palma	Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV150	Rio das Velhas	Santo Hipólito	Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV152	Rio das Velhas	Santo Hipólito	Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
BV156	Rio das Velhas	Baldim	Nitrogênio Amoniacal Total, Arsênio Total.	ALTA	ALTA	ALTA	ALTA	ALTA
JE029	Ribeirão São Pedro (JQ3)	Medina	Nitrogênio Amoniacal Total, Fenóis Totais, Nitrito.	ALTA	ALTA	ALTA	ALTA	ALTA
PT005	Córrego Rico	Paracatu	Arsênio Total, Nitrato.	ALTA	ALTA	ALTA	ALTA	ALTA
SC14	Ribeirão Poderoso	Santa Luzia	Nitrogênio Amoniacal Total, Cianeto.	ALTA	ALTA	ALTA	ALTA	ALTA
SC19	Ribeirão das Neves	Pedro Leopoldo	Nitrogênio Amoniacal Total.	ALTA	ALTA	ALTA	ALTA	ALTA
SC24	Ribeirão Jequitibá	Prudente de Morais	Nitrogênio Amoniacal Total, Cádmio Total, Cianeto.	ALTA	ALTA	ALTA	ALTA	ALTA
SC26	Ribeirão do Matadouro	Sete Lagoas	Nitrogênio Amoniacal Total, Nitrito.	ALTA	ALTA	ALTA	ALTA	ALTA

A seguir serão apresentadas os principais fatores de pressão ambiental que podem ter contribuído com as ocorrências dos parâmetros responsáveis pelas ocorrências de CT Alta nas estações descritas na Tabela 8.

<u>Nitrogênio Amoniacal total:</u> as ocorrências de CT Alta na bacia do rio das Velhas estão associadas aos lançamentos dos esgotos domésticos dos municípios de Baldim, Santana de Pirapama, Pedro Leopoldo, Santa Luzia, Prudente de Morais, Sete Lagoas e Nova Lima, bem como dos efluentes de indústrias de bebidas, curtume, laticínios e têxteis presentes nessas regiões.

A presença de nitrogênio amoniacal no ribeirão São Pedro (JE029) está associada aos lançamentos de esgotos domésticos, curtumes e matadouros presentes no município de Medina.

Os lançamentos de esgotos domésticos e efluentes industriais dos ramos alimentício e têxtil do município de Betim são responsáveis pelas ocorrências de CT Alta no Ribeirão das Areias em Betim (BP073).

No ribeirão Ibirité a jusante do município de Ibirité (BP081), a ocorrência de CT Alta devido ao parâmetro nitrogênio amoniacal é em função dos lançamentos de esgotos domésticos do município de Ibirité.

No rio Paraibuna (BS017) a ocorrência de CT Alta é devido, também, ao lançamento de esgotos domésticos do município de Juiz de Fora.

<u>Arsênio Total:</u> as fontes de arsênio na bacia do rio das Velhas concentram-se em seu alto curso, região de Nova Lima, onde estão localizadas as fontes naturais (anomalias) e o beneficiamento de minério de ouro que contribui para sua disponibilização para o corpo de água.

No córrego Rico a jusante da cidade de Paracatu (PT005) as ocorrências de arsênio estão associadas a uma anomalia geogênica da região do município de Paracatu/MG.

<u>Cobre dissolvido:</u> nas águas do córrego da Mina (AV320) a presença de cobre dissolvido pode ser em função das atividades de beneficiamento de minério de ouro no município de Nova Lima.

<u>Chumbo total:</u> o chumbo foi responsável pela CT Alta em duas estações de amostragem, uma localizada no rio das Velhas (BV141) e a outra no ribeirão Ibirité (BP081). No rio das Velhas as ocorrências estão associadas ao desenvolvimento de atividades agrossilvipastoris e metalúrgicas desenvolvidas nessa região. E no ribeirão Ibirité, na bacia do rio Paraopeba, as ocorrências de chumbo total podem estar relacionadas aos lançamentos de efluentes industriais dos ramos de refino de petróleo presentes no município de Ibirité.

<u>Cádmio total:</u> as ocorrências de cádmio no ribeirão Jequitibá a jusante da ETE Prudente de Morais (SC24) estão associadas às atividades de siderurgia desenvolvidas no município de Sete Lagoas. No rio Paraibuna (estações BS017 e BS083) as atividades de metalurgia e siderurgia são desenvolvidas na região.

<u>Fenóis Totais:</u> as violações de fenóis totais no ribeirão São Pedro (JE029) estão associadas aos lançamento de esgotos sanitários do município de Medina.

<u>Nitrito</u>: Na estação localizada no ribeirão São Pedro (JE029) a violação de nitrito pode estar associada ao lançamento de esgotos sanitários do município de Medina e as atividades pecuárias. No ribeirão do Matadouro (SC26) esses resultados estão associadas aos lançamentos dos esgotos domésticos do município de Sete Lagoas.

Zinco total: Na estação de amostragem localizada no córrego da Mina (AV320), as ocorrências de zinco podem ser em função dos efluentes do beneficiamento do minério na região de Nova Lima. No rio Paraibuna (estações BS017 e BS083) é resultado é devido às atividades de metalurgia e siderurgia desenvolvidas na região.

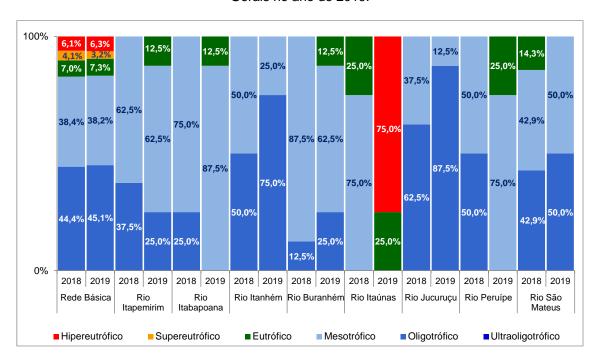
4.3 Índice de Estado Trófico – IET

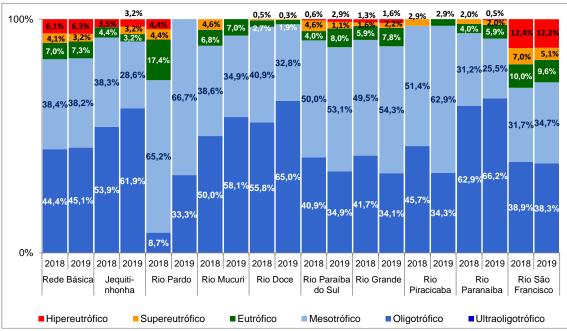
Para avaliar o potencial de eutrofização dos corpos de água monitorados foi calculado o Índice de Estado Trófico (IET) a partir dos valores de fósforo e clorofila-a obtidos no período de 2007 a 2019 em Minas Gerais. As análises foram realizadas em 625 estações de monitoramento, sendo a grande maioria (99,56%) localizadas em corpos de águas lóticos (águas correntes).

Como mostrado na Figura 14, verificou-se o predomínio das categorias mais baixas do IET (Ultraoligotrófico, Oligotrófico e Mesotrófico), as quais conjuntamente representaram 83% dos resultados obtidos em 2019, refletindo, de um modo geral, corpos de água de baixa produtividade (condição trófica) em que não ocorrem, ou ocorrem poucas, interferências indesejáveis sobre o uso da água, decorrentes da presença de nutrientes. Esse comportamento se repete de forma aproximada desde 2014. Destaca-se que não houve ocorrência da categoria Ultraoligotrófico no ano de 2019. As condições mais favoráveis à eutrofização (crescimento da biomassa algal), representadas pelas categorias mais altas do IET (Eutrófico, Supereutrófico e Hipereutrófico) somaram 16% dos resultados.

100% 7% 10% 10% 11% 11% 4% 12% 5% 8% 4% 14% 5% 6% 8% 7% 8% 7% 7% 11% 10% 11% 9% 11% 13% 13% 21% 15% 16% 17% 26% 19% 31% 20% 38% 38% 20% 33% 44% 33% 38% 35% 37% 33% 42% 38% 32% 38% 27% 13% 44% 45% 13% 12% 36% 32% 9% 25% 12% 9% 19% 16% 16% 14% 9% 6% 6% 0% 2008 2009 2010 2012 2015 2016 2007 2013 2014 2017 2019 2011 2018 Hipereutrófico Supereutrófico ■ Eutrófico Mesotrófico Oligotrófico Ultraoligotrófico

Figura 14: Frequência de ocorrência de IET nas bacias do estado de Minas Gerais no período de 2007 a 2019.


Fonte: Elaborado pelos autores (2021)


Na Figura 15 são apresentadas as frequências de ocorrências do IET nas bacias de Minas Gerais no ano de 2019. Destacaram-se as bacias dos rios Itanhém, Jucuruçu, São Mateus e Pardo, que registraram os maiores percentuais, em conjunto, dos graus

de baixa trofia (100% dos resultados), sendo consideradas as de melhor condição de qualidade de acordo com esse indicador.

A condição mais crítica foi registrada na bacia do rio Itaúnas com registros dos graus mais elevados do IET (eutrófico, supereutrófico e hipereutrófico) em 100% dos resultados analisados em 2019. A bacia do rio São Francisco também apresentou 26,9% dos resultados nos graus mais elevados do IET, indicando corpos de água com alta produtividade em relação às condições naturais, em geral afetados por atividades antrópicas, como a ocorrência de episódios de florações de algas, destacando-se o rio das Velhas (SF5).

Figura 15: Frequência de ocorrência dos resultados do IET nas bacias hidrográficas de Minas Gerais no ano de 2019.

Em relação às sub-bacias do rio São Francisco (Figura 16) as melhores condições registradas para o IET foram registradas nas sub-bacias dos rios Alto Rio São Francisco (SF1), Pará (SF2), Paracatu (SF7), Urucuia (SF8) e rios Pandeiro/Calindó (SF9), que apresentaram acima de 90% dos resultados nos graus de baixa trofia (Oligotrófico e Mesotrófico).

Já as piores condições foram observadas no rio das Velhas (SF5) e nos afluentes do rio Verde Grande (SF10), que apresentaram a condição mais crítica em relação à eutrofização, com registros dos graus mais elevados do IET (eutrófico, supereutrófico e hipereutrófico) em 50,6% e 40,9% dos resultados, respectivamente. Esses resultados refletem os impactos dos grandes centros urbanos da Região Metropolitana de Belo Horizonte e do município de Montes Claros, sobre os corpos de água que drenam estas regiões. A calha do rio São Francisco apresentou 93,4% dos resultados entre Oligrotrófico e Mesotrófico. Já quanto aos estados eutrófico e supereutrófico os percentuais somam 6,6%.

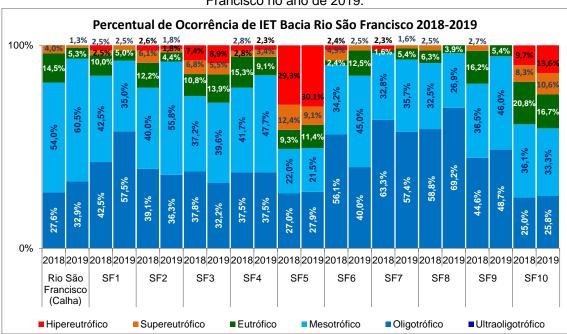
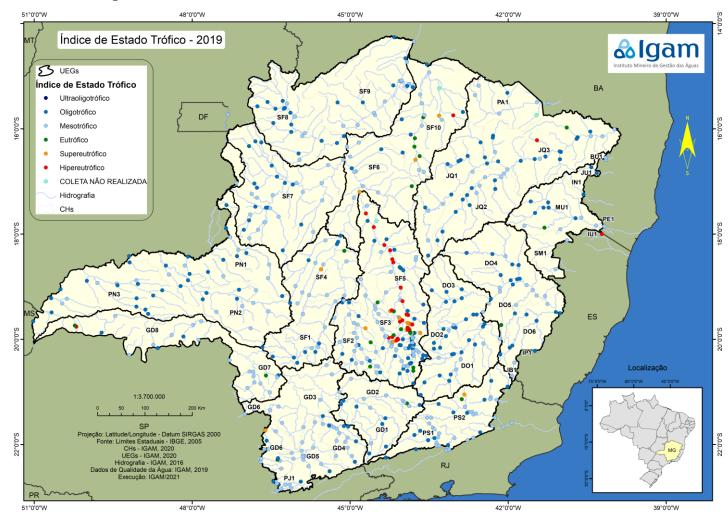
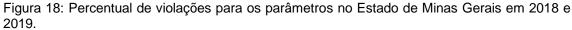


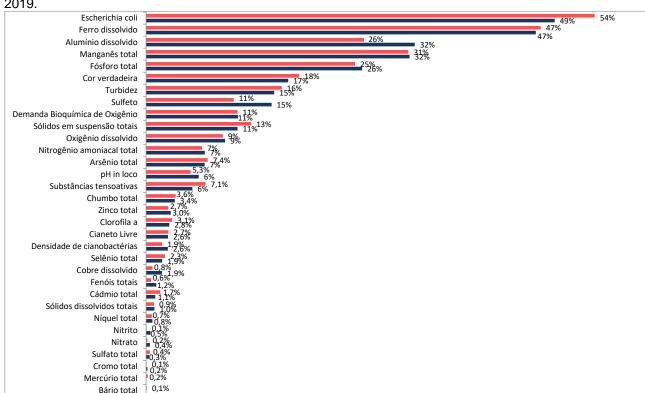
Figura 16: Frequência de ocorrência dos resultados do IET nas sub-bacias do rio São Francisco no ano de 2019.

Fonte: Elaborado pelos autores (2021)

O mapa com o resultado anual do IET obtido em 2019 é apresentado na Figura 17. Observou-se a predominância das faixas de IET Mesotrófico e Oligotrófico em todo o estado. As faixas Supereutrófica e Hipereutrófica ocorreram, principalmente, em estações localizadas próximas a grandes centros urbanos como da Região Metropolitana de Belo Horizonte, Montes Claros, Ibirité e Betim.




Figura 17: Médias do Índice de Estado Trófico – IET no Estado de Minas Gerais em 2019.

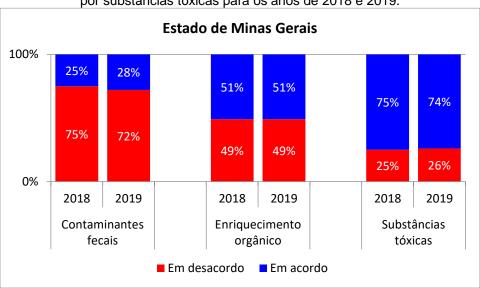

4.4 Análise da conformidade à legislação

Considerando os resultados do ano 2019 para as estações de amostragem do Estado de Minas Gerais, avaliaram-se os parâmetros monitorados em relação ao percentual de amostras cujos valores violaram os limites legais da Deliberação Normativa COPAM/CERH-MG Nº 01/08 para as respectivas classes de enquadramento.

Na Figura 18 é apresentado o percentual de violações em ordem decrescente de cada parâmetro e indica os constituintes mais críticos no Estado, em 2018 e 2019. Esses resultados permitem conhecer as principais interferências das atividades predominantes em Minas Gerais.

Os cinco parâmetros que apresentaram o maior número de violações foram *Escherichia coli* (49%), ferro dissolvido (47%), alumínio dissolvido (32%), manganês total (32%) e fósforo total (26%), em 2019, assim como no ano anterior. Os principais fatores de degradação ambiental que podem ser apontados como contribuintes dos resultados citados acima são a falta de coleta e tratamento de esgotos sanitários em grande parte do estado, ocasionando lançamento de efluentes *in natura* nos corpos de água, além das atividades industriais e minerárias que são predominantes na parte central do Estado e quadrilátero ferrífero, respectivamente, e da produção agropecuária, que é diversificada e disseminada por todas as regiões do estado.

4.5 Panorama da Qualidade das Águas Superficiais


Para o cálculo do percentual de conformidade e não conformidade, cada estação de amostragem foi avaliada segundo o cumprimento da Deliberação Normativa Conjunta COPAM/CERH-MG 01/08 por meio da avaliação dos resultados de três grupos de parâmetros: contaminação fecal, enriquecimento orgânico e substâncias tóxicas. Vale lembrar que a metodologia de análise desses indicativos está descrita no item 2.4.

Na Figura 19 é apresentado o percentual de estações em conformidade e não conformidade com os limites legais (DN COPAM/CERH-MG nº 01/2008) para cada um dos indicativos, nos anos de 2018 e 2019 para todo o Estado de Minas Gerais.

Observa-se que os contaminantes fecais representam o maior percentual de não conformidade em todo o Estado, chegando a apresentar 72% dos pontos monitorados em desconformidade com o limite de classe. Esses resultados demonstram os impactos causados pelos lançamentos de esgotos sanitários sobre as águas dos rios de Minas Gerais, mas ocasionalmente podem estar associados a cargas difusas.

O percentual de estações em não conformidade com os limites em relação ao indicativo de enriquecimento orgânico em 2019 se manteve em 49% se comparado ao ano anterior, sendo o segundo colocado na comparação entre os indicativos. Esses resultados também estão associados aos lançamentos de esgotos sanitários, além das atividades de agricultura e das praticas não sustentáveis de manejo dos solos. Registrase ainda um aumento em 2019 comparativamente a 2018 no percentual de estações em não conformidade com os limites em relação aos indicativos de substâncias tóxicas de 25% para 26% das estações.

Figura 19: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico, contaminação fecal e contaminação por substâncias tóxicas para os anos de 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

A seguir será apresentado um detalhamento da situação da avaliação de cada indicativo separadamente, para as principais bacias hidrográficas do Estado de Minas Gerais.

Nas Figura 20 e Figura 21 são apresentados os percentuais de estações em conformidade e não conformidade com os limites legais (DN COPAM/CERH-MG nº 01/2008) para os contaminantes fecais, para as principais bacias do Estado de Minas Gerais e a seguir para as CH da bacia do rio São Francisco nos anos de 2018 e 2019.

Observa-se que, à exceção das bacias do rio Mucuri e rio Jequitinhonha, pelo menos metade das estações estiveram em desconformidade com o limite de classe em pelo menos uma das medições realizadas no ano de 2019.

Já na bacia do rio São Francisco nas CH SF2 – rio Pará, SF3 – rio Paraopeba e SF5 – rio das Velhas, foram registrados os maiores percentuais de estações em desconcormidade aos limites de contaminação fecal no ano de 2019, com respectivamente, 100%, 82% e 72% de desconformidade.

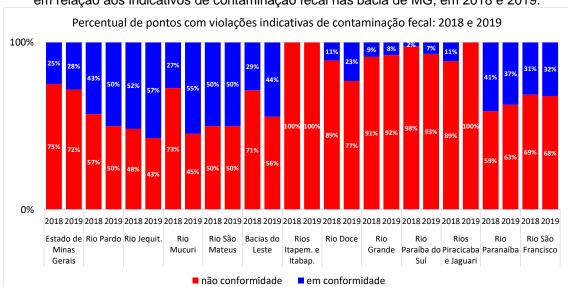
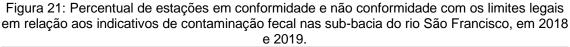
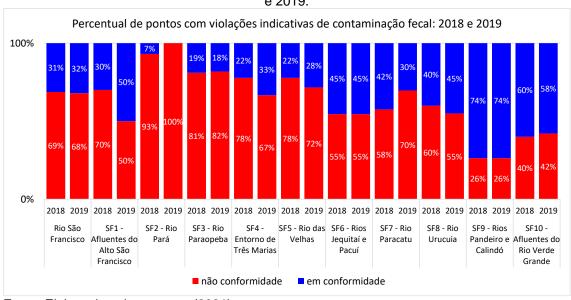




Figura 20: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de contaminação fecal nas bacia de MG, em 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

Nas Figura 22 e Figura 23 são apresentados os percentuais de estações em conformidade e não conformidade com os limites legais (DN COPAM/CERH-MG nº 01/2008) para o indicativo de enriquecimento orgânico (fósforo total, DBO, nitrato e nitrogênio amoniacal total), nos anos de 2018 e 2019 para as principais bacias do estado de Minas Gerais e a seguir para as CH da bacia do rio São Francisco.

Para as bacias de Minas Gerais observa-se que na maioria delas mais de 30% dos pontos apresentaram desconformidade com o limite de classe para os indicativos de enriquecimento orgânico. Destaque para as bacias dos rios Itapemerim e Itabapoana, rios Piracicaba e Jaguari e bacia do rio Grande nas quais 75%, 67% e 67% das estações, respectivamente, apresentaram desconformidade. Esses resultados refletem a elevada pressão exercida pelos lançamentos de esgotos sanitários, nessas regiões, bem como também pelas atividades do setor agroindustrial sobre os recursos hídricos , sendo esse último mais evidente na bacia do rio Grande.

Na bacia do rio São Francisco, as CH SF2 – rio Pará, SF3 – rio Paraopeba, SF4 – Entorno de Três Marias, SF5 – rio das Velhas e SF10 – afluentes do rio Verde Grande apresentaram mais de 50% das estações, no ano de 2019, em desconformidade para os indicativos de enriquecimento orgânico. O aporte de matéria orgânica e nutrientes provenientes dos lançamentos de esgotos sanitários de grandes centros urbanos localizados nas bacias dos rios Pará, Paropeba e Velhas, em especial aqueles da Região Metropolitana de Belo Horizonte e outros municípios próximos, bem como na região do rio Verde Grande, sobretudo dos municípios de Jaíba, Janaúba, Montes Claros e Porteirinha, além da presença, nesta região, de indústrias de bebidas, têxtil e laticínios, contribuem para a situação observada.

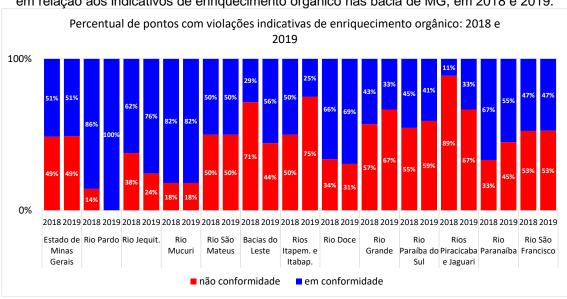


Figura 22: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico nas bacia de MG, em 2018 e 2019.

2018 e 2019.

Percentual de pontos com violações indicativas de enriquecimento orgânico: 2018 e 2019

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

SF5 - Rio das SF6 - Rios

Velhas

Jeguitaí e

Pacuí

em conformidade

SF7 - Rio

Paracatu

SF8 - Rio

Urucuia

SF9 - Rios

Calindó

Pandeiro e Afluentes do

Rio Verde

Grande

2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

SF4 -

Três Marias

Paraopeba Entorno de

■ não conformidade

Figura 23: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de enriquecimento orgânico nas sub-bacia do rio São Francisco, em 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

SF1 -

Alto São

Francisco

Francisco Afluentes do

SF2 - Rio

Pará

SF3 - Rio

0%

Rio São

Na Figura 24 e Figura 25 são apresentados os percentuais de estações em conformidade e não conformidade com os limites legais (DN COPAM/CERH-MG nº 01/2008) para os indicativos de contaminação por substâncias tóxicas (arsênio total, cianeto livre, chumbo total, cobre dissolvido, zinco total, cromo total, cádmio total, mercúrio e fenóis totais), nos anos de 2018 e 2019 para as principais bacias do Estado de Minas Gerais e a seguir para as CG da bacia do rio São Francisco.

No ano de 2019, os maiores percentuais de desconformidade para os indicativos de contaminação por substâncias tóxicas ocorreram nas bacias do rio Paraíba do Sul e rio São Francisco, com mais de 30% de estações com alguma desconformidade.

Já na bacia do rio São Francisco os maiores registros de desconformidade com os limites de classe para as substâncias tóxicas foram registrados nas CH SF1 - Afluentes do Alto São Francisco, SF2 – rio Pará, SF5 – Velhas, SF6 – rios Jequitaí e Pacuí e SF7 – rio Paracatu, as quais apresentaram mais de 30% de estações com resultados em desconformidade para as substancias tóxicas.

Vale informar que no ano de 2019 houve registros de desconformidade para as substâncias tóxicas em todas as sub-bacias de Minas Gerais.

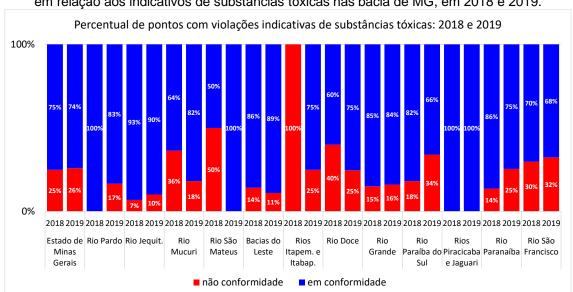
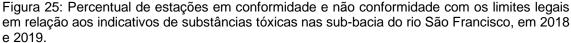
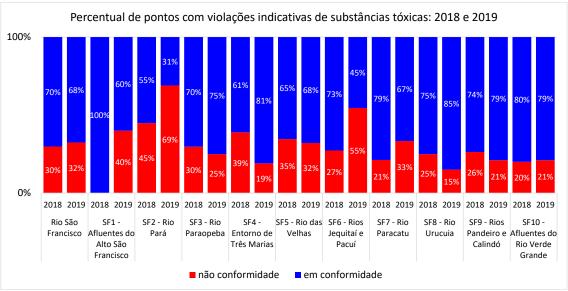




Figura 24: Percentual de estações em conformidade e não conformidade com os limites legais em relação aos indicativos de substâncias tóxicas nas bacia de MG, em 2018 e 2019.

Fonte: Elaborado pelos autores (2021)

Os resultados dos indicativos para cada estação de monitoramento avaliada são apresentados no Apêndice A.

4.6 Densidade de Cianobactérias

A avaliação da presença de cianobactérias foi realizada em 198 estações da rede básica de monitoramento. Verificou-se que 72% das estações de monitoramento apresentaram contagens de densidade de cianobactérias inferiores ou iguais a 1.000 cél/mL em todas

as campanhas realizadas, no ano de 2019. Esse comportamento é verificado ao longo da série histórica de monitoramento, em que a maioria das estações apresentaram contagem de cianobactérias inferiores ou iguais a 1.000 cél/mL em todo o ano. Na Figura 26 são representados os percentuais dos maiores valores anuais de densidade de cianobactérias em cada ponto ao longo da série histórica.

Na sequência, verifica-se que 13% das estações apresentaram contagens de densidade de cianobactérias entre 1.000 e 10.000 cél/ mL durante as campanhas realizadas em 2019. Sendo assim, em 85% dos pontos monitorados não apresentaram restriçõespara eventual contato primário durante todo o ano, em relação à presença de cianobactérias⁵.

Além disso, 5% das estações apresentaram contagens de densidade de cianobactérias entre 10.000 e 50.000 cél/ mL (padrão de Classe 2) e 4% das estações apresentaram contagens de densidade de cianobactérias entre 50.000 e 100.000 cél/ mL (padrão de Classe 3), totalizando 9% de pontos monitorados com condições críticas em relação a presença de cianobactérias e comprometimento dos usos. Ainda, observa-se que 6% das estações de monitoramento apresentaram contagens de densidade de cianobactérias acima de 100.000 cél/mL ao menos uma vez ao longo do ano, sendo essa a condição com alto risco de qualquer contato com a água. As águas com esta condição devem ser evitadas sobretudo no período de estiagem, quando há maior propensão à floração de cianobactérias.

Na comparação ao ano anterior, observa-se piora nos resultados em 2019, uma vez que houve redução no número de estações que apresentaram contagens de densidade de cianobactérias inferiores ou iguais a 1.000 cél/mL e elevação no percentual de estações que apresentaram contagens de densidade de cianobactérias superiores a 100.000 cél/mL.

Verificou-se que as contagens superiores a 100.000 cél/ mL ocorreram nas sub-bacias dos rio das Velhas, rio Paraíba do Sul e Afluentes do rio Verde Grande.

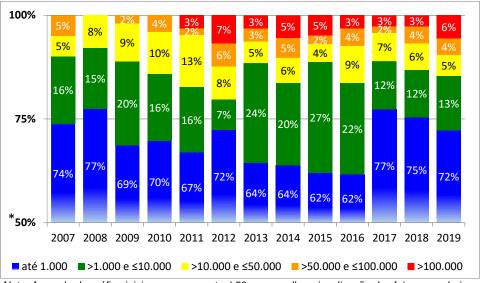


Figura 26: Percentuais dos maiores valores de densidade de cianobactérias obtidos ao longo da série histórica de monitoramento.

Nota: A escala do gráfico inicia-se no percentual 50, para melhor visualização das faixas com baixos percentuais obtidos.

Fonte: Elaborado pelos autores (2021)

⁵ Essa análise não considera outros parâmetros, como *Escherichia coli*, que também tem padrões e metodologia específica para definição de uso próprio de recreação de contato primário, cf. art. 13, II, 3 da DN Conjunta Copam CERH nº 1 de 2008 e art. 2º, § 1º "c" e § 4º, "b" da Resolução Conama nº 274, de 29 de novembro 2000.

O mapa com a distribuição dos resultados da densidade de cianobactérias obtidos no ano de 2019 para cada estação de monitoramento é apresentado na Figura 27. Os resultados foram divididos em cinco intervalos de valores, de forma a facilitar a visualização. Ressalta-se que para determinação do intervalo de cada estação foi considerado o pior resultado (maior contagem de cél/mL) obtido no ano.

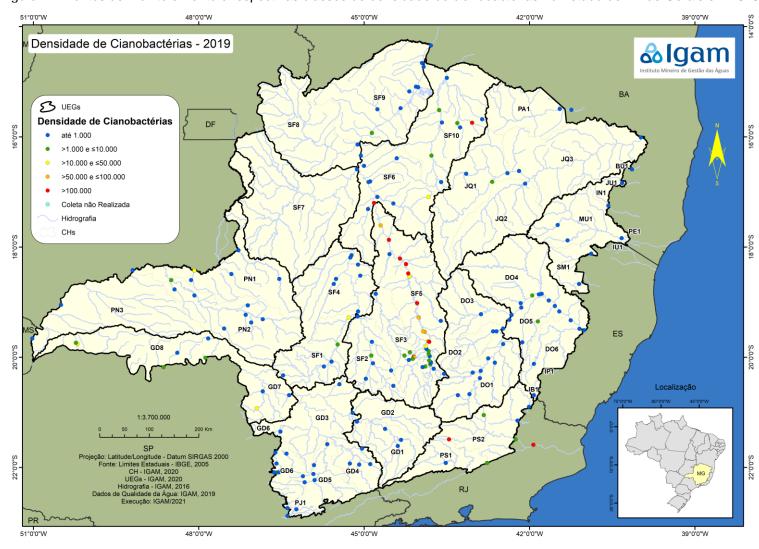


Figura 27: Pontos de monitoramento e respectivas classes de densidade de cianobactérias no Estado de Minas Gerais em 2019.

Na Tabela 9 são apresentados os corpos de água que apresentaram densidade de cianobactéria igual ou superior a 20.000 cél/mL em Minas Gerais no ano de 2019, bem como os resultados de cianotoxinas.

Observa-se que foram registradas violações nas bacias do rio das Velhas, Afluentes do Rio Verde Grande, Rio Grande, Rio Jequitinhonha, Rio Paraíba do Sul, rio Paranaíba e Rio Paraopeba. Considerando as estações em que são realizadas análises de cianobactérias, as bacias do rio das Velhas e Paraopeba foram as que apresentaram o maior número de violações.

Na calha do rio das Velhas, os maiores valores de densidade de cianobactérias que violaram o limite do enquadramento foram obtidos nos municípios de Santana de Pirapama (BV141), Augusto de Lima e Corinto (BV146), Várzea da Palma (BV149), Santo Hipólito (BV150 e BV152) e Lassance (BV151).

Na bacia do rio Paraopeba, os maiores valores de densidade de cianobactérias que violaram o limite do enquadramento foram obtidos nos municípios de Ibirité, nos cursos de água córrego Pintado (BP075) e ribeirão Ibirité (BP081); e na represa de Três Marias (BPE8).

Dentre os principais fatores de pressão que podem ter contribuído para as densidades de cianobactérias registradas nessas sub-bacias destacam-se o aporte de nutrientes para os corpos de água proveniente principalmente da carga difusa de áreas agrícolas e a carga orgânica proveniente dos lançamentos de esgotos sanitários.

Ressalta-se que foi observada a ocorrência de espécies incluídas na lista de cianobactérias potencialmente tóxicas (Sant'Anna *et al.*, 2008) em algumas estações de monitoramento que apresentaram violação de densidade de cianobactérias, como mostrado na Tabela 9.

No entanto, é necessário lembrar que a presença desses organismos, mesmo que em altas densidades, não acarreta, necessariamente, toxicidade da água. A produção de toxina em cada espécie de cianobactéria varia em função da interação de diversos fatores, como a genética, o estado fisiológico do organismo e os parâmetros ambientais. Assim, uma mesma espécie pode produzir toxinas em um ambiente e não produzi-las em outro.

Ademais, nas estações onde foi constatada a presença de cianobactérias potencialmente tóxicas em densidades superiores a 20.000 cél/mL foi realizada a análise das cianotoxinas: microcistina e saxitoxina. No Brasil, a única legislação que disciplina limites para concentração de cianotoxinas é a Portaria de Consolidação Nº 5 de 2017 do Ministério da Saúde, que estabelece procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para o consumo humano. Nessa portaria, o limite para presença de microcistinas é de 1 μg/L e de saxitoxinas, 3 μg/L. Todas as detecções de saxitoxinas estiveram dentro dos limites estabelecidos pela Portaria nas estações de monitoramento. Entretanto foram registradas violações ao padrão de microcistina no rio Mosquito (SF020) e no rio das Velhas (BV146, BV148, BV149, BV151 e BV152).

Ressalta-se que as estações de monitoramento localizadas na sub-bacia do ribeirãoPampulha não foram avaliadas neste relatório, mas serão aboradas em relatório específico.

Tabela 9: Corpos de água que apresentaram densidade de cianobactéria igual ou superior a 20.000 cél/mL em Minas Gerais no ano de 2019.

Bacias / Subbacias Hidrográfica	Município	Descrição	Estações	Classe	Data da Coleta	Densidade Cianobactéria	Espécie Predominante	Microcistina	Saxitoxina
Afluentes do Rio Verde Grande	Porteirinha	Rio Mosquito a jusante de Porterinha	SF020	Classe 2	21-mar	103.486,9	Planktothrix agardhii*	0,6982	0,02612
Afluentes do Rio Verde Grande	Porteirinha	Rio Mosquito a jusante de Porterinha	SF020	Classe 2	11-jun	32.084,5	Planktothrix agardhii*	1,0004	<0,02
Afluentes do Rio Verde Grande	Porteirinha	Rio Mosquito a jusante de Porterinha	SF020	Classe 2	20-set	22.385,9	Planktothrix agardhii*	<0,15	0,02974
Afluentes do Rio Verde Grande	Porteirinha	Rio Mosquito a jusante de Porterinha	SF020	Classe 2	6-dez	34.337,2	Planktothrix agardhii*	0,3796	<0,02
Rio das Velhas	Santa Luzia	Rio das Velhas logo a jusante do Ribeirão do Onça	BV105	Classe 3	19-mar	26.582,0	Cylindrospermopsi s sp. Anagnostidinema sp.	<0,15	0,11063
Rio das Velhas	Santa Luzia	Rio das Velhas logo a jusante do Ribeirão do Onça	BV105	Classe 3	9-abr	33.554,0	Anagnostidinema sp.	<0,15	0,04714
Rio das Velhas	Lagoa Santa	Rio das Velhas na Ponte Raul Soares, em Lagoa Santa	BV137	Classe 3	12-abr	49.473,8	Anagnostidinema sp. Aphanizomenon sp.	<0,15	0,03475
Rio das Velhas	Lagoa Santa	Rio das Velhas no Parque do Sumidouro em Lagoa Santa	BV138	Classe 3	25-jan	24.541,0	Anagnostidinema sp.	<0,15	0,03174
Rio das Velhas	Lagoa Santa	Rio das Velhas no Parque do Sumidouro em Lagoa Santa	BV138	Classe 3	12-abr	23.251,1	Anagnostidinema sp. Aphanizomenon sp.	<0,15	0,05999
Rio das Velhas	Santana De Pirapama	Rio das Velhas na cidade de Santana do Pirapama	BV141	Classe 2	28-jan	83.272,8	Anagnostidinema sp.	<0,15	0,10710
Rio das Velhas	Inimutaba, Presidente Juscelino	Rio das Velhas a jusante do ribeirão Santo Antônio	BV142	Classe 2	29-jan	40.003,6	Anagnostidinema sp.	<0,15	0,08127
Rio das Velhas	Várzea Da Palma	Rio das Velhas na cidade de Várzea da Palma	BV148	Classe 2	31-jan	34.566,4	<i>Microcystis</i> sp.	0,5530	0,03536

Bacias / Subbacias Hidrográfica	Município	Descrição	Estações	Classe	Data da Coleta	Densidade Cianobactéria	Espécie Predominante	Microcistina	Saxitoxina
Rio das Velhas	Várzea Da Palma	Rio das Velhas a montante da sua foz no rio São Francisco em Guaicuí	BV149	Classe 2	31-jan	46.240,9	<i>Microcystis</i> sp.	0,9398	0,02790
Rio das Velhas	Santa Luzia	Rio das Velhas a jusante do Ribeirão da Mata	BV153	Classe 3	10-abr	69.373,6	Cylindrospermopsi s / Raphidiopsis Anagnostidinema sp.	<0,15	0,16875
Rio das Velhas	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas	BV156	Classe 2	28-jan	63.164,9	Anagnostidinema sp.	<0,15	0,03566
Rio das Velhas	Santa Luzia	Rio das Velhas a jusante do aterro sanitário de Santa Luzia	SC16	Classe 3	10-abr	131.112,1	Anagnostidinema sp. Cylindrospermopsi s / Raphidiopsis	<0,15	0,11960
Rio das Velhas	Santa Luzia	Rio das Velhas logo a jusante do Ribeirão do Onça	BV105	Classe 3	15-out	28.395,8	Planktothrix agardhii*	<0,15	0,02842
Rio das Velhas	Santa Luzia	Rio das Velhas logo a jusante do Ribeirão do Onça	BV105	Classe 3	3-dez	24.564,0	Planktothrix agardhii*	0,2837	0,03612
Rio das Velhas	Lagoa Santa	Rio das Velhas na Ponte Raul Soares, em Lagoa Santa	BV137	Classe 3	18-out	52.596,8	Planktothrix agardhii*	0,5037	<0,02
Rio das Velhas	Lagoa Santa	Rio das Velhas no Parque do Sumidouro em Lagoa Santa	BV138	Classe 3	18-out	76.814,0	Planktothrix agardhii*	0,4107	<0,02
Rio das Velhas	Santana de Pirapama	Rio das Velhas na cidade de Santana do Pirapama	BV141	Classe 2	3-set	29.444,6	Planktothrix agardhii*	<0,15	0,02440
Rio das Velhas	Santana de Pirapama	Rio das Velhas na cidade de Santana do Pirapama	BV141	Classe 2	21-out	77.618,8	Planktothrix agardhii*	0,3000	<0,02
Rio das Velhas	Santana de Pirapama	Rio das Velhas na cidade de Santana do Pirapama	BV141	Classe 2	12-nov	258.950,7	Planktothrix agardhii*	<0,15	0,02315
Rio das Velhas	Augusto de Lima, Corinto	Rio das Velhas a jusante do rio Pardo Grande	BV146	Classe 2	23-out	92.254,2	Microcystis aeruginosa*	3,2700	<0,02

Bacias / Subbacias Hidrográfica	Município	Descrição	Estações	Classe	Data da Coleta	Densidade Cianobactéria	Espécie Predominante	Microcistina	Saxitoxina
Rio das Velhas	Augusto de Lima, Corinto	Rio das Velhas a jusante do rio Pardo Grande	BV146	Classe 2	13-nov	617.609,5	Planktothrix agardhii*	<0,15	<0,02
Rio das Velhas	Várzea da Palma	Rio das Velhas na cidade de Várzea da Palma	BV148	Classe 2	8-ago	44.738,7	Planktothrix agardhii*	0,4798	0,00605
Rio das Velhas	Várzea da Palma	Rio das Velhas na cidade de Várzea da Palma	BV148	Classe 2	24-out	84.832,6	Microcystis aeruginosa*	5,9200	<0,02
Rio das Velhas	Várzea da Palma	Rio das Velhas a montante da sua foz no rio São Francisco em Guaicuí	BV149	Classe 2	24-out	247.371,6	Microcystis aeruginosa* Microcystis sp.	7,3800	<0,02
Rio das Velhas	Santo Hipólito	Rio das Velhas a jusante do rio Paraúna, na localidade de Senhora da Glória	BV150	Classe 2	3-set	23.651,8	Planktothrix agardhii*	<0,15	<0,02
Rio das Velhas	Santo Hipólito	Rio das Velhas a jusante do rio Paraúna, na localidade de Senhora da Glória	BV150	Classe 2	12-nov	400.123,2	Planktothrix agardhii*	0,9817	0,02198
Rio das Velhas	Lassance	Rio das Velhas a jusante do córrego do Vinho em Lassance	BV151	Classe 2	8-ago	62.658,7	Planktothrix agardhii*	0,6209	0,00605
Rio das Velhas	Lassance	Rio das Velhas a jusante do córrego do Vinho em Lassance	BV151	Classe 2	24-out	364.241,2	Microcystis aeruginosa*	7,9900	<0,02
Rio das Velhas	Lassance	Rio das Velhas a jusante do córrego do Vinho em Lassance	BV151	Classe 2	13-nov	43.110,0	Microcystis aeruginosa*	0,3579	0,02004
Rio das Velhas	Santo Hipólito	Rio das Velhas entre os Rios Paraúna e Pardo Grande	BV152	Classe 2	7-ago	21.226,4	Planktothrix agardhii*	<0,15	0,00605
Rio das Velhas	Santo Hipólito	Rio das Velhas entre os Rios Paraúna e Pardo Grande	BV152	Classe 2	23-out	88.478,9	Microcystis aeruginosa*	1,9900	<0,02

Bacias / Subbacias Hidrográfica	Município	Descrição	Estações	Classe	Data da Coleta	Densidade Cianobactéria	Espécie Predominante	Microcistina	Saxitoxina
Rio das Velhas	Santo Hipólito	Rio das Velhas entre os Rios Paraúna e Pardo Grande	BV152	Classe 2	12-nov	363.983,0	Planktothrix agardhii*	0,6868	0,02145
Rio das Velhas	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas	BV156	Classe 2	7-ago	20.573,3	Planktothrix agardhii*	<0,15	0,00605
Rio das Velhas	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas	BV156	Classe 2	21-out	91.963,8	Planktothrix agardhii*	0,4500	<0,02
Rio das Velhas	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas	BV156	Classe 2	12-nov	87.355,7	Planktothrix agardhii*	0,2009	0,03167
Rio das Velhas	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas	BV156	Classe 2	4-dez	25.290,0	Planktothrix agardhii*	0,3081	0,02163
Rio das Velhas	Santa Luzia	Rio das Velhas a jusante do aterro sanitário de Santa Luzia	SC16	Classe 3	16-out	40.698,0	Planktothrix agardhii*	0,1855	<0,02
Rio Grande	São Sebastião do Paraíso	Córrego Liso a jusante de São Sebastião do Paraíso	BG071	Classe 2	26-fev	27.043,3	Anagnostidinema sp.	<0,15	<0,02
Rio Grande	São Sebastião do Paraíso	Córrego Liso a jusante de São Sebastião do Paraíso	BG071	Classe 2	14-mai	43.371,3	Anagnostidinema sp.	<0,15	<0,02
Rio Jequitinhonha	Medina	Ribeirão São Pedro a Jusante de Medina	JE029	Classe 2	30-out	25.092,5	Phormidium sp.	<0,15	<0,02
Rio Jequitinhonha	Almenara	Rio São Francisco a jusante de mineração de grafite	JE047	Classe 2	5-nov	60.726,3	Anagnostidinema sp.	<0,15	<0,02
Rio Paraíba do Sul	Santos Dumont	Rio do Pinho a jusante da Represa de Ponte Preta.	BS074	Classe 2	30-mai	206.603,6	Planktothrix agardhii*	<0,15	0,32828
Rio Paraíba do Sul	Santos Dumont	Rio do Pinho a jusante da Represa de Ponte Preta.	BS074	Classe 2	29-ago	60.817,1	Cylindrospermopsi s sp.	<0,15	0,31474
Rio Paraíba do Sul	Cambuci (RJ)	Rio Paraíba do Sul a jusante da confluência do rio Pomba.	BS079	Classe 2	22-ago	264.263,7	Aphanocapsa sp.	<0,15	0,02091

Bacias / Subbacias Hidrográfica	Município	Descrição	Estações	Classe	Data da Coleta	Densidade Cianobactéria	Espécie Predominante	Microcistina	Saxitoxina
Rio Paranaíba	Araguari, Cumari (GO)	Rio Paranaíba entre os reservatórios de Emborcação e Itumbiara	PB007	Classe 2	29-nov	47.606,3	Planktolyngbya sp.	0,2695	0,02163
Rio Paraopeba	Ibirité	Córrego Pintado a jusante da REGAP.	BP075	Classe 2	4-fev	10.4397,2	Merismopedia tenuissima	0,2529	0,02559
Rio Paraopeba	Ibirité	Córrego Pintado a jusante da REGAP.	BP075	Classe 2	26-abr	22.083,6	Anagnostidinema sp.	<0,15	0,02676
Rio Paraopeba	Ibirité	Ribeirão Ibirité a jusante do município de Ibirité.	BP081	Classe 2	26-abr	85.313,8	Anagnostidinema sp.	<0,15	<0,02
Rio Paraopeba	Ibirité	Córrego Pintado a jusante da REGAP.	BP075	Classe 2	18-out	32.671,4	Phormidium sp. Planktolyngbya sp.	0,2800	0,02000
Rio Paraopeba	Felixlândia	Remanso da represa de Três Marias no Município de Felixlândia	BPE6	Classe 2	31-jul	24.492,0	Cylindrospermopsi s sp.	<0,15	0,03598
Rio Paraopeba	Felixlândia	Remanso da represa de Três Marias no Município de Felixlândia	BPE6	Classe 2	24-out	22.571,3	Cylindrospermopsi s sp. Oscillatoria sp.	<0,15	0,04000
Rio Paraopeba	Abaeté	Remanso da represa de Três Marias no Município de Abaeté	BPE7	Classe 2	24-out	26.459,8	Cylindrospermopsi s sp.	0,1500	0,10000
Rio Paraopeba	Abaeté	Remanso da represa de Três Marias no Município de Abaeté	BPE7	Classe 2	20-nov	24.201,0	Cylindrospermopsi s sp.	0,1590	0,32846
Rio Paraopeba	Três Marias	Corpo da represa de Três Marias no Município de Três Marias	BPE8	Classe 2	24-out	44.909,0	Cylindrospermopsi s sp.	<0,15	0,14000
Rio Paraopeba	Três Marias	Corpo da represa de Três Marias no Município de Três Marias	BPE8	Classe 2	20-nov	92.446,2	Cylindrospermopsi s sp.	<0,15	0,16711
Rio Paraopeba	Três Marias	Corpo da represa de Três Marias no Município de Três Marias	BPE8	Classe 2	12-dez	68.074,0	Cylindrospermopsi s sp.	0,3977	0,10160

^{*}Segundo Sant'Anna et al., 2008.

4.7 Ensaios Ecotoxicológicos

Os Ensaios Ecotoxicológicos foram realizados, no ano de 2019, em 194 estações da rede básica de monitoramento. No ano de 2019 foram observados efeitos não-tóxicos sobre os organismos-teste na maioria das análises realizadas (70%), condição que tem prevalecido ao longo da série histórica de monitoramento, na maioria dos anos (Figura 32). O efeito crônico foi registrado em 29% das amostras, representando uma diminuição quando comparado com 2018 (31%) e o Efeito Agudo se manteve em 2% das amostras analisadas em 2019.

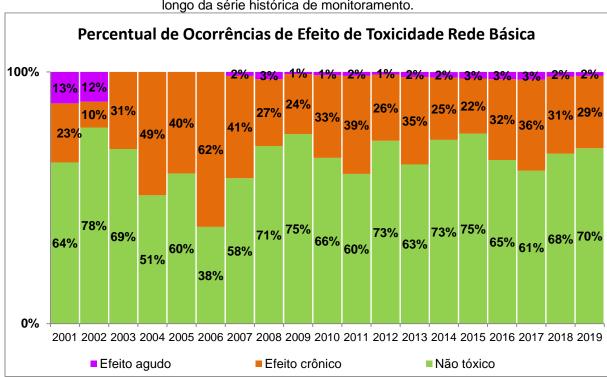


Figura 28: Frequência de ocorrência dos resultados de ecotoxicidade em Minas Gerais ao longo da série histórica de monitoramento.

Fonte: Elaborado pelos autores (2021)

Na Tabela 10 estão listados os percentuais de ocorrência de efeito agudo das estações que apresentaram esta condição durante as campanhas de monitoramentode em 2019. O efeito agudo, que indica a letalidade dos organismos, foi observado nas bacias hidrográficas dos rios Jequitaí e Pacuí (SF6), do rio das Velhas (SF5), rio Paraopeba (SF3), Afluentes do rio Verde Grande (SF10), Médio / Baixo Rio Jequitinhonha (JQ3) e Alto rio Paranaíba (PN1).

No ribeirão São Pedro a jusante de Medina (JE029) a ocorrência de efeito agudo está associada aolançamento de esgotos domésticos e efluentes de indústrias (abatedouro) presentes no município de Medina, além da pecuária e dos lixões às margens do curso d'água.

No ribeirão dos Vieiras em Montes Claros (VG003), as ocorrências de efeito agudo são decorrentes dos lançamentos de esgotos domésticos e efluentes de indústrias de fabricação de calçados, de sabões, têxteis, alimentícias e de papel, além das atividades de extração de areia desenvolvidas nesse município.

As ocorrências de efeito agudo observadas no rio Guavanipã (SFC001), na bacia dos rios Jequitaí/Pacuí, estão associadas aos lançamentos de esgotos domésticos e

efluentes industriais, dos ramos de fabricação de cachaça, metalúrgico e de atividades extração de areia, cascalho e pedras preciosas desenvolvidas no município de Bocaiúva.

Na bacia do rio Paranaíba a ocorrência de efeito agudo observada no ano de 2019, no rio Piçarrão, reflete os impactos lançamentos esgotos domésticos do município de Araguari. As ocorrências de nitrogênio amoniacal verificadas no ribeirão Ibirité a jusante do município de Ibirité (BP081) são em função dos lançamentos de esgotos domésticos e dos lançamentos de efluentes industriais dos ramos de refino de petróleo presentes no município de Ibirité.

Na bacia do rio das Velhas as ocorrências de efeito agudo são em função dos lançamentos de esgotos domésticos e efluentes industriais dos diversificados empreendimentos industriais presentes nos municípios de Sabará e Santa Luzia.

Tabela 10: Percentual de ocorrência de efeito agudo (pior condição) nas estações durante as campanhas de monitoramento de 2019.

Circunscrição Hidrográfica	Curso d´água	Municípios	Estação	Percentual de ocorrência de Efeito Agudo
JQ3 - Médio / Baixo Rio Jequitinhonha	Ribeirão São Pedro	Medina	JE029	75%
PN1 - Alto Rio Paranaíba	Rio Piçarrão	Araguari	PB041	25%
SF10 - Afluentes do Rio Verde Grande	Ribeirão dos Vieiras ou Rio dos Vieiras	Montes Claros	VG003	50%
SF3 - Rio Paraopeba	Ribeirão Ibirité	Ibirité	BP081	25%
SF5 - Rio das Velhas	Ribeirão Arrudas	Sabará	BV155	50%
SF5 - Rio das Velhas	Ribeirão do Onça	Santa Luzia	BV154	50%
SF6 - Rios Jequitaí e Pacuí	Rio Guavanipã	Bocaiúva	SFC001	25%

4.8 Avaliação dos dados de vazão e cargas de DBO e fósforo

Considerando as estações de monitoramento de qualidade de água em que houve medição simultânea de vazão em 2019 (206 estações), foi realizado um total de 404 medições. Vale destacar que a periodicidade de medição de vazão é semestral.

Para o parâmetro demanda bioquímica de oxigênio, do total de amostras realizadas em 77 delas os valores de concentração de DBO foram superiores ao limite de detecção do método analítico (<2 mg/L). Na Tabela 11 são apresentados os resultados de vazão e carga para todas as estações em que as concentrações de DBO foram superiores ao limite de detecção. Os cursos de água com os maiores registros de concentração de DBO (>20 mg/L) foram: no rio das Velhas (BV105), Ribeirão São Pedro (JE029), rio São João (PA009), Córrego Caeté (SC03), ribeirão Jequitibá (SC24) e rio Verde Grande (VG004).

Em aproximadamente 42% dos resultados os valores de carga de DBO são superiores a 100 kg/h e em 10% são superiores a 1.000 kg/h. As estações de monitoramento BV105 (rio das Velhas em Santa Luzia) e VG004 (rio Verde Grande em Montes Claros) foram aquelas em que os valores de carga e concentração de DBO foram os maiores registrados em 2019. Na estação BV105 a carga de DBO foi igua a 1.072,37 kg/h e a

concentração 22,0 mg/L; e na estação VG004 a carga de DBO foi igua a 1.571,53 kg/h e a concentração 36,0 mg/L

Tabela 11: Estações de monitoramento de qualidade da água com medição simultânea de vazão que apresentaram concentrações de DBO superiores ao limite de detecção do método analítico em 2019

СН	Municípios	Curso Dágua	Estação	Data de Amostragem	DBO (mg/L)	Vazão (m3/s)	Carga DBO (kg/h)
GD7 - Afluentes Mineiros do Médio Grande	Passos	Ribeirão da Bocaina	BG053	26/02/2019	3,6	2,00	25,97
GD7 - Afluentes Mineiros do Médio Grande	Passos	Ribeirão da Bocaina	BG053	13/08/2019	3,2	0,72	8,28
GD7 - Afluentes Mineiros do Médio Grande	Pratápolis	Rio Santana (GD7)	BG074	27/02/2019	5,9	12,41	263,59
GD6 - Afluentes Mineiros dos Rios Mogi- Guaçu / Pardo	Bandeira do Sul, Poços de Caldas	Rio Pardo (GD6)	BG075	28/02/2019	2,1	28,32	214,11
GD3 - Entorno do Reservatório de Furnas	Muzambinho	Rio Muzambinho	BG089	13/05/2019	5,6	1,23	24,71
GD3 - Entorno do Reservatório de Furnas	Muzambinho	Rio Muzambinho	BG089	12/08/2019	8,1	0,75	21,73
GD3 - Entorno do Reservatório de Furnas	Monte Belo	Rio Muzambo	BG090	12/08/2019	2,0	7,02	50,54
GD6 - Afluentes Mineiros dos Rios Mogi- Guaçu / Pardo	Espírito Santo Do Pinhal	Rio Mogi-Guaçu	BG093	05/11/2019	2,4	13,90	120,10
GD6 - Afluentes Mineiros dos Rios Mogi- Guaçu / Pardo	Andradas	Rio Jaguari-Mirim	BG097	01/03/2019	9,9	11,21	399,60
GD6 - Afluentes Mineiros dos Rios Mogi- Guaçu / Pardo	Andradas	Rio Jaguari-Mirim	BG097	16/08/2019	7,7	1,52	42,11
SF3 - Rio Paraopeba	Entre Rios De Minas	Rio Brumado	BP024	15/07/2019	3,1	2,38	26,51
SF3 - Rio Paraopeba	Betim, Juatuba	Rio Betim	BP071	05/02/2019	4,0	1,94	27,89
SF3 - Rio Paraopeba	Betim, Juatuba	Rio Betim	BP071	25/07/2019	15,0	1,24	66,69
SF3 - Rio Paraopeba	Betim	Rio Paraopeba	BP072	26/08/2019	2,0	15,38	110,74
SF3 - Rio Paraopeba	Betim (Mg)	Rio Betim	BP088	25/07/2019	2,6	0,20	1,91
PS1 - Rios Preto e Paraibuna	Matias Barbosa (Mg)	Rio Paraibuna	BS018	19/03/2019	3,6	18,21	236,03
PS1 - Rios Preto e Paraibuna	Matias Barbosa (Mg)	Rio Paraibuna	BS018	26/11/2019	5,5	14,56	288,21
PS2 - Rios Pomba e Muiriaé	Santo Antônio De Pádua (Rj)	Rio Pomba	BS054	21/11/2019	2,0	70,03	504,21
BU1 - Rio Buranhém	Guaratinga, Santo Antônio Do Jacinto (Mg)	Rio Buranhém	BU001	07/02/2019	2,1	0,26	1,95
SF5 - Rio das Velhas	Itabirito	Rio Itabirito	BV035	10/07/2019	2,7	4,03	39,12
SF5 - Rio das Velhas	Nova Lima, Raposos	Rio das Velhas	BV063	11/10/2019	4,2	3,61	54,58
SF5 - Rio das Velhas	Sabará	Rio das Velhas	BV067	12/07/2019	2,8	7,55	76,07
SF5 - Rio das Velhas	Sabará	Ribeirão Sabará	BV076	05/04/2019	6,0	1,06	22,88
SF5 - Rio das Velhas	Sabará	Ribeirão Sabará	BV076	12/07/2019	15,0	0,95	51,36
SF5 - Rio das Velhas	Sabará	Rio das Velhas	BV080	15/07/2019	2,7	5,94	57,69
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV105	04/06/2019	16,0	16,95	976,55

СН	Municípios	Curso Dágua	Estação	Data de Amostragem	DBO (mg/L)	Vazão (m3/s)	Carga DBO (kg/h)
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV105	16/07/2019	22,0	13,54	1072,37
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	BV130	11/04/2019	5,2	4,39	82,16
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	BV130	18/07/2019	13,0	2,37	110,96
SF5 - Rio das Velhas	Lagoa Santa	Rio das Velhas	BV137	19/07/2019	8,2	21,06	621,72
SF5 - Rio das Velhas	Jequitibá	Ribeirão Jequitibá	BV140	22/07/2019	5,7	1,43	29,26
SF5 - Rio das Velhas	Santana De Pirapama	Rio das Velhas	BV141	22/07/2019	16,0	26,70	1537,86
SF5 - Rio das Velhas	Várzea Da Palma	Rio das Velhas	BV148	24/10/2019	3,4	24,12	295,28
SF5 - Rio das Velhas	Várzea Da Palma	Rio das Velhas	BV149	24/10/2019	3,1	21,79	243,20
SF5 - Rio das Velhas	Lassance	Rio das Velhas	BV151	24/10/2019	2,1	26,77	202,34
SF5 - Rio das Velhas	Santo Hipólito (Mg)	Rio das Velhas	BV152	23/10/2019	5,5	22,24	440,27
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV153	10/04/2019	6,3	30,83	699,22
IB1 - Itabapoana	Alto Caparaó	Rio Caparaó	IB001	16/07/2019	4,6	0,19	3,14
IB1 - Itabapoana	Caiana	Rio São João (IB1)	IB003	17/04/2019	2,9	4,67	48,74
IB1 - Itabapoana	Caiana	Rio São João (IB1)	IB003	16/07/2019	4,1	2,27	33,56
JQ3 - Médio / Baixo Rio Jequitinhonha	Jequitinhonha	Rio Jequitinhonha	JE028	05/02/2019	2,0	48,36	348,18
JQ3 - Médio / Baixo Rio Jequitinhonha	Medina	Ribeirão São Pedro (JQ3)	JE029	05/02/2019	12,0	0,01	0,27
JQ3 - Médio / Baixo Rio Jequitinhonha	Medina	Ribeirão São Pedro (JQ3)	JE029	30/10/2019	23,0	0,01	0,78
SF2 - Rio Pará	Itaúna	Rio São João (SF2)	PA009	15/02/2019	25,0	2,11	189,99
SF2 - Rio Pará	Itaúna	Rio São João (SF2)	PA009	23/08/2019	13,0	1,92	89,72
SF2 - Rio Pará	Nova Serrana	Ribeirão da Fartura	PA020	26/02/2019	8,0	0,28	8,04
SF2 - Rio Pará	Nova Serrana	Ribeirão da Fartura	PA020	11/11/2019	4,6	0,03	0,51
SF2 - Rio Pará	Carmo Do Cajuru, Divinópolis	Rio Pará	PA028	15/02/2019	2,3	20,17	167,04
PN1 - Alto Rio Paranaíba	Patos De Minas	Rio Paranaíba	PB003	10/09/2019	2,3	10,25	84,90
PN2 - Rio Araguari	Perdizes	Rio Capivara	PB013	27/09/2019	2,0	19,69	141,77
PN2 - Rio Araguari	Uberlândia	Rio Uberabinha	PB023	10/06/2019	9,3	11,89	398,21
PN2 - Rio Araguari	Uberlândia	Rio Uberabinha	PB023	16/09/2019	4,6	9,77	161,76
PN3 - Afluentes Mineiro do Baixo Paranaíba	Carneirinho	Rio Paranaíba	PB034	02/12/2019	2,4	3074,35	26562,34
PN3 - Afluentes Mineiro do Baixo Paranaíba	Monte Alegre De Minas	Ribeirão Monte Alegre	PB049	18/09/2019	4,1	0,61	8,93
SF7 - Rio Paracatu	Paracatu	Córrego Rico	PT005	11/09/2019	3,6	0,26	3,36
DO5 - Rio Caratinga	Caratinga	Rio Caratinga	RD056	17/04/2019	13,0	2,45	114,58
DO5 - Rio Caratinga	Caratinga	Rio Caratinga	RD056	17/07/2019	8,1	0,68	19,87
SF5 - Rio das Velhas	Caeté	Córrego Caeté	SC03	10/04/2019	11,0	0,21	8,27
SF5 - Rio das Velhas	Caeté	Córrego Caeté	SC03	08/07/2019	25,0	0,16	14,41
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	SC17	11/04/2019	6,1	3,70	81,21
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	SC17	12/07/2019	12,0	2,04	87,96
SF5 - Rio das Velhas	Prudente De Morais (Mg)	Ribeirão Jequitibá	SC24	11/04/2019	14,0	0,09	4,62

СН	Municípios	Curso Dágua	Estação	Data de Amostragem	DBO (mg/L)	Vazão (m3/s)	Carga DBO (kg/h)
SF5 - Rio das Velhas	Prudente De Morais (Mg)	Ribeirão Jequitibá	SC24	15/10/2019	71,0	0,02	5,47
SF4 - Entorno de Três Marias	Abaeté (Mg)	Ribeirão Marmelada	SF007	13/11/2019	6,0	178,48	3855,17
SF6 - Rios Jequitaí e Pacuí	Ibiaí (Mg)	Riacho Canabrava	SF018	06/12/2019	7,8	2,39	67,07
SF6 - Rios Jequitaí e Pacuí	Jequitaí	Rio Jequitaí	SFC005	05/12/2019	2,8	152,89	1541,17
SF10 - Afluentes do Rio Verde Grande	Janaúba	Rio Gorutuba	SFC145	21/03/2019	2,8	0,22	2,22
SF7 - Rio Paracatu	Brasilândia De Minas	Rio Paracatu	SFH13	04/12/2019	2,6	196,87	1842,73
SF10 - Afluentes do Rio Verde Grande	Capitão Enéas, Montes Claros	Rio Verde Grande	SFJ16	25/03/2019	6,4	11,99	276,32
SF10 - Afluentes do Rio Verde Grande	Janaúba, São João Da Ponte	Rio Verde Grande	SFJ20	25/03/2019	2,9	0,94	9,80
SF10 - Afluentes do Rio Verde Grande	Janaúba, São João Da Ponte	Rio Verde Grande	SFJ20	19/09/2019	3,4	0,11	1,30
SF8 - Rio Urucuia	Pintópolis, São Romão	Rio Urucuia	UR017	26/11/2019	2,1	132,20	999,41
SF10 - Afluentes do Rio Verde Grande	Montes Claros	Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	22/03/2019	6,1	1,45	31,77
SF10 - Afluentes do Rio Verde Grande	Montes Claros	Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	23/09/2019	8,6	0,34	10,54
SF10 - Afluentes do Rio Verde Grande	Capitão Enéas, Montes Claros	Rio Verde Grande	VG004	22/03/2019	36,0	12,13	1571,53
SF10 - Afluentes do Rio Verde Grande	Capitão Enéas, Montes Claros	Rio Verde Grande	VG004	09/12/2019	2,1	12,96	97,96
SF10 - Afluentes do Rio Verde Grande	Janaúba, Nova Porteirinha	Rio Gorutuba	VG007	05/12/2019	7,3	0,71	18,57

Em relação ao parâmetro fósforo, observou que do total de amostras realizadas no ano de 2019 com medição simultânea, em 295 delas os resultados foram superiores ao limite de detecção do método analítico (<0,02).

Na Tabela 12 são apresentados os resultados de vazão e carga para todas as estações em que as concentrações de fósforo foram superiores a 0,1 mg/L (valor do limite legal para as classes 1 e 2).

Os cursos de água com os maiores registros de concentração de fósforo total (>1,0 mg/L) foram: no rio Gorutuba (VG007), ribeirão São Perdo (JE029) e rio Betim (BP071). Em relação ao total de amostras apresentadas na Tabela 14, em aproximadamente 46% delas os valores de carga de fósforo total foram superiores à 10 kg/h e em 33% foram superiores a 20 kg/h. Os maiores valores de cargas de fósforo foram registrados nas estações SF023, no rio São Francisco no município de Ibiá, com resultado igual a 1.374, 58 kg/h; e na estação SF019, também no rio São Francisco no município de Pirapora, com resultado igual a 685,99 kg/h. Ressalta-se que os valores elevados de carga nessas estações estão associadas às condições de vazão registradas, que foram muito elevadas e potencializaram os resultados de carga desse parâmetro.

Tabela 12: Estações de monitoramento de qualidade da água com medição simultânea de vazão que apresentaram concentrações de fósforo total superiores ao limite de classe (0,1 mg/L) em 2019

СН	Municípios	Curso D'água	Estação	Data de Amostragem	P _{total} (mg/L)	Vazão (m3/s)	Carga de P (kg/h)
GD5 - Rio Sapucaí	Paraguaçu	Rio Sapucaí	BG049	27/02/2019	0,12	129,60	55,99
GD7 - Afluentes Mineiros do Médio Grande	Passos	Ribeirão da Bocaina	BG053	26/02/2019	0,22	2,00	1,59
GD7 - Afluentes Mineiros do Médio Grande	Passos	Ribeirão da Bocaina	BG053	13/08/2019	0,42	0,72	1,09
GD5 - Rio Sapucaí	Conceição Dos Ouros	Rio Sapucaí- Mirim	BG054	20/02/2019	0,12	22,50	9,72
GD5 - Rio Sapucaí	Conceição Dos Ouros	Rio Sapucaí- Mirim	BG054	06/11/2019	0,14	6,73	3,39
GD7 - Afluentes Mineiros do Médio Grande	Cássia	Ribeirão São Pedro (GD7)	BG056	27/02/2019	0,29	3,72	3,88
GD8 - Afluentes Mineiros do Baixo Grande	Conceição Das Alagoas	Rio Uberaba	BG059	24/09/2019	0,15	6,74	3,64
GD7 - Afluentes Mineiros do Médio Grande	Pratápolis	Rio Santana (GD7)	BG074	27/02/2019	0,36	12,41	16,08
GD7 - Afluentes Mineiros do Médio Grande	Pratápolis	Rio Santana (GD7)	BG074	14/08/2019	0,14	4,48	2,26
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	Bandeira Do Sul, Poços De Caldas	Rio Pardo (GD6)	BG075	28/02/2019	0,25	28,32	25,49
GD3 - Entorno do Reservatório de Furnas	Muzambinho	Rio Muzambinho	BG089	13/05/2019	0,16	1,23	0,71
GD3 - Entorno do Reservatório de Furnas	Muzambinho	Rio Muzambinho	BG089	12/08/2019	0,16	0,75	0,43
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	Andradas	Rio Jaguari- Mirim	BG097	01/03/2019	0,79	11,21	31,89
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	Andradas	Rio Jaguari- Mirim	BG097	16/08/2019	0,49	1,52	2,68
SF3 - Rio Paraopeba	Mário Campos, São Joaquim De Bicas	Rio Paraopeba	BP068	26/08/2019	0,17	14,31	8,76
SF3 - Rio Paraopeba	Juatuba	Ribeirão Serra Azul	BP069	25/07/2019	0,48	0,39	0,68
SF3 - Rio Paraopeba	Betim, São Joaquim De Bicas	Rio Paraopeba	BP070	04/02/2019	0,21	39,23	29,66
SF3 - Rio Paraopeba	Betim, São Joaquim De Bicas	Rio Paraopeba	BP070	26/08/2019	0,2	15,07	10,85
SF3 - Rio Paraopeba	Betim, Juatuba	Rio Betim	BP071	05/02/2019	0,42	1,94	2,93
SF3 - Rio Paraopeba	Betim, Juatuba	Rio Betim	BP071	25/07/2019	5,58	1,24	24,81
SF3 - Rio Paraopeba	Betim	Rio Paraopeba	BP072	26/08/2019	0,84	15,38	46,51
SF3 - Rio Paraopeba	Curvelo, Pompéu	Rio Paraopeba	BP078	27/08/2019	0,14	18,07	9,11
SF3 - Rio Paraopeba	Papagaios, Paraopeba	Rio Paraopeba	BP083	26/07/2019	0,11	23,94	9,48
SF3 - Rio Paraopeba	Betim	Rio Betim	BP088	25/07/2019	0,15	0,20	0,11
SF3 - Rio Paraopeba	Felixlândia , Pompéu	Rio Paraopeba	BP099	27/08/2019	0,27	10,04	9,76
PS1 - Rios Preto e Paraibuna	Matias Barbosa	Rio Paraibuna	BS018	19/03/2019	0,15	18,21	9,83
PS1 - Rios Preto e Paraibuna	Matias Barbosa	Rio Paraibuna	BS018	26/11/2019	0,3	14,56	15,72
PS2 - Rios Pomba e Muiriaé	Patrocínio Do Muriaé	Rio Muriaé	BS057	20/11/2019	0,13	66,53	31,14
SF5 - Rio das Velhas	Itabirito	Rio Itabirito	BV035	10/07/2019	0,11	4,03	1,59
SF5 - Rio das Velhas	Nova Lima , Raposos	Rio das Velhas	BV063	11/10/2019	0,11	3,61	1,43
SF5 - Rio das Velhas	Sabará	Rio das Velhas	BV067	12/07/2019	0,12	7,55	3,26
SF5 - Rio das Velhas	Sabará	Ribeirão Sabará	BV076	05/04/2019	0,18	1,06	0,69

СН	Municípios	Curso D'água	Estação	Data de Amostragem	P _{total} (mg/L)	Vazão (m3/s)	Carga de P (kg/h)
SF5 - Rio das Velhas	Sabará	Ribeirão Sabará	BV076	12/07/2019	0,45	0,95	1,54
SF5 - Rio das Velhas	Sabará	Rio das Velhas	BV080	15/07/2019	0,13	5,94	2,78
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV105	04/06/2019	0,39	16,95	23,80
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV105	16/07/2019	0,72	13,54	35,10
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	BV130	11/04/2019	0,21	4,39	3,32
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	BV130	18/07/2019	0,72	2,37	6,15
SF5 - Rio das Velhas	Lagoa Santa	Rio das Velhas	BV137	12/04/2019	0,44	30,26	47,93
SF5 - Rio das Velhas	Lagoa Santa	Rio das Velhas	BV137	19/07/2019	0,55	21,06	41,70
SF5 - Rio das Velhas	Jequitibá	Ribeirão Jequitibá	BV140	22/04/2019	0,17	3,10	1,90
SF5 - Rio das Velhas	Jequitibá	Ribeirão Jequitibá	BV140	22/07/2019	0,82	1,43	4,21
SF5 - Rio das Velhas	Santana De Pirapama	Rio das Velhas	BV141	22/04/2019	0,16	58,89	33,92
SF5 - Rio das Velhas	Santana De Pirapama	Rio das Velhas	BV141	22/07/2019	0,58	26,70	55,75
SF5 - Rio das Velhas	Várzea Da Palma	Rio das Velhas	BV148	24/10/2019	0,3	24,12	26,05
SF5 - Rio das Velhas	Várzea Da Palma	Rio das Velhas	BV149	24/10/2019	0,22	21,79	17,26
SF5 - Rio das Velhas	Lassance	Rio das Velhas	BV151	24/10/2019	0,34	26,77	32,76
SF5 - Rio das Velhas	Santo Hipólito	Rio das Velhas	BV152	24/04/2019	0,15	132,61	71,61
SF5 - Rio das Velhas	Santo Hipólito	Rio das Velhas	BV152	23/10/2019	0,25	22,24	20,01
SF5 - Rio das Velhas	Santa Luzia	Rio das Velhas	BV153	10/04/2019	0,14	30,83	15,54
IB1 - Itabapoana	Alto Caparaó	Rio Caparaó	IB001	16/07/2019	0,16	0,19	0,11
JQ3 - Médio / Baixo Rio Jequitinhonha	Medina	Ribeirão São Pedro (JQ3)	JE029	05/02/2019	0,36	0,01	0,01
JQ3 - Médio / Baixo Rio Jequitinhonha	Medina	Ribeirão São Pedro (JQ3)	JE029	30/10/2019	2,03	0,01	0,07
SF2 - Rio Pará	Divinópolis , São Sebastião Do Oeste	Rio Itapecerica	PA004	15/02/2019	0,13	23,81	11,14
SF2 - Rio Pará	Divinópolis , São Sebastião Do Oeste	Rio Itapecerica	PA004	23/08/2019	0,52	4,74	8,87
SF2 - Rio Pará	Divinópolis	Rio Itapecerica	PA007	15/02/2019	0,2	28,98	20,87
SF2 - Rio Pará	Divinópolis	Rio Itapecerica	PA007	23/08/2019	0,43	4,34	6,71
SF2 - Rio Pará	Itaúna	Rio São João (SF2)	PA009	15/02/2019	0,5	2,11	3,80
SF2 - Rio Pará	Itaúna	Rio São João (SF2)	PA009	23/08/2019	0,77	1,92	5,31
SF2 - Rio Pará	Conceição Do Pará, Pitangui	Rio São João (SF2)	PA011	26/02/2019	0,17	15,47	9,47
SF2 - Rio Pará	Conceição Do Pará, Pitangui	Rio São João (SF2)	PA011	12/11/2019	0,28	4,43	4,47
SF2 - Rio Pará	Conceição Do Pará, Pitangui	Rio Pará	PA013	27/08/2019	0,15	31,14	16,82
SF2 - Rio Pará	Martinho Campos, Pompéu	Rio Pará	PA019	27/08/2019	0,12	40,61	17,54
SF2 - Rio Pará	Nova Serrana	Ribeirão da Fartura	PA020	26/02/2019	0,12	0,28	0,12
PN1 - Alto Rio Paranaíba	Patos De Minas	Rio Paranaíba	PB003	12/03/2019	0,27	75,30	73,19
PN1 - Alto Rio Paranaíba	Patos De Minas	Rio Paranaíba	PB003	10/09/2019	0,11	10,25	4,06
PN1 - Alto Rio Paranaíba	Araguari	Rio Jordão	PB009	15/03/2019	0,16	10,19	5,87
PN1 - Alto Rio Paranaíba	Araguari	Rio Jordão	PB009	29/11/2019	0,12	4,76	2,05

СН	Municípios	Curso D'água	Estação	Data de Amostragem	P _{total} (mg/L)	Vazão (m3/s)	Carga de P (kg/h)
PN2 - Rio Araguari	Perdizes	Rio Capivara	PB013	29/03/2019	0,19	27,13	18,56
PN2 - Rio Araguari	Perdizes	Rio Capivara	PB013	27/09/2019	0,42	19,69	29,77
PN2 - Rio Araguari	Uberlândia	Rio Uberabinha	PB023	10/06/2019	0,36	11,89	15,41
PN2 - Rio Araguari	Uberlândia	Rio Uberabinha	PB023	16/09/2019	0,31	9,77	10,90
PN3 - Afluentes Mineiro do Baixo Paranaíba	Gurinhatã , Ituiutaba	Rio da Prata (PN3)	PB029	22/03/2019	0,11	107,73	42,66
PN1 - Alto Rio Paranaíba	Abadia Dos Dourados	Rio Dourados	PB038	13/03/2019	0,11	47,16	18,67
PN2 - Rio Araguari	Ibiá	Rio Misericórdia	PB042	06/12/2019	0,12	36,05	15,57
PN3 - Afluentes Mineiro do Baixo Paranaíba	Monte Alegre De Minas	Ribeirão Monte Alegre	PB049	18/09/2019	0,14	0,61	0,30
PJ1 - Piracicaba / Jaguari	Extrema	Rio Jaguari	PJ001	22/02/2019	0,15	13,53	7,31
SF7 - Rio Paracatu	Paracatu	Córrego Rico	PT005	05/06/2019	0,27	0,65	0,63
SF7 - Rio Paracatu	Paracatu	Córrego Rico	PT005	11/09/2019	0,33	0,26	0,31
SF7 - Rio Paracatu	Brasilândia De Minas	Rio Paracatu	PT009	04/12/2019	0,13	120,51	56,40
SF7 - Rio Paracatu	Buritizeiro, Santa Fé De Minas	Rio Paracatu	PT013	25/11/2019	0,15	114,21	61,67
SF7 - Rio Paracatu	Paracatu	Ribeirão Escurinho	PTE013	27/11/2019	0,12	211,91	91,54
DO4 - Rio Suaçuí Grande	Governador Valadares	Rio Doce	RD044	11/12/2019	0,16	1127,67	649,54
DO5 - Rio Caratinga	Caratinga	Rio Caratinga	RD056	17/04/2019	0,39	2,45	3,44
DO5 - Rio Caratinga	Caratinga	Rio Caratinga	RD056	17/07/2019	0,57	0,68	1,40
SF5 - Rio das Velhas	Caeté	Córrego Caeté	SC03	10/04/2019	0,85	0,21	0,64
SF5 - Rio das Velhas	Caeté	Córrego Caeté	SC03	08/07/2019	0,6	0,16	0,35
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	SC17	11/04/2019	0,11	3,70	1,46
SF5 - Rio das Velhas	Vespasiano	Ribeirão da Mata	SC17	12/07/2019	0,56	2,04	4,10
SF5 - Rio das Velhas	Prudente De Morais	Ribeirão Jequitibá	SC24	15/10/2019	0,89	0,02	0,07
SF1 - Afluentes do Alto São Francisco	Abaeté, Martinho Campos	Rio São Francisco (SF)	SF005	26/02/2019	0,12	294,38	127,17
SF4 - Entorno de Três Marias	Abaeté	Ribeirão Marmelada	SF007	13/11/2019	0,76	178,48	488,32
SF4 - Entorno de Três Marias	São Gonçalo Do Abaeté	Rio Abaeté	SF017	28/02/2019	0,36	100,33	130,03
SF6 - Rios Jequitaí e Pacuí	Pirapora	Rio São Francisco (SF)	SF019	13/06/2019	0,16	434,55	250,30
SF6 - Rios Jequitaí e Pacuí	Pirapora	Rio São Francisco (SF)	SF019	05/12/2019	0,18	1058,62	685,99
SF6 - Rios Jequitaí e Pacuí	Ibiaí	Rio São Francisco (SF)	SF023	14/06/2019	0,13	491,63	230,08
SF6 - Rios Jequitaí e Pacuí	Ibiaí	Rio São Francisco (SF)	SF023	06/12/2019	0,23	1660,12	1374,5 8
SF7 - Rio Paracatu	Brasilândia De Minas	Rio Paracatu	SFH13	04/12/2019	0,12	196,87	85,05
SF10 - Afluentes do Rio Verde Grande	Capitão Enéas, Montes Claros	Rio Verde Grande	SFJ16	25/03/2019	0,16	11,99	6,91
SM1 - Rio São Mateus	Mantena	Rio São Mateus (SM1)	SM003	12/04/2019	0,12	1,50	0,65
SF8 - Rio Urucuia	Riachinho, Urucuia	Rio Urucuia	UR007	07/06/2019	0,11	54,53	21,60
SF10 - Afluentes do Rio Verde Grande	Montes Claros	Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	23/09/2019	0,88	0,34	1,08
SF10 - Afluentes do Rio Verde Grande	Capitão Enéas, Montes Claros	Rio Verde Grande	VG004	22/03/2019	0,28	12,13	12,22

СН	Municípios	Curso D'água	Estação	Data de Amostragem	P _{total} (mg/L)	Vazão (m3/s)	Carga de P (kg/h)
SF10 - Afluentes do Rio Verde Grande	Janaúba, Nova Porteirinha	Rio Gorutuba	VG007	21/03/2019	0,64	0,28	0,65
SF10 - Afluentes do Rio Verde Grande	Janaúba, Nova Porteirinha	Rio Gorutuba	VG007	05/12/2019	1,11	0,71	2,82

No Apêndice B são apresentados os valores de concentração, vazão e carga para os parâmetros DBO e fósforo total, para todas as estações de monitoramento em que são realizadas medições simultâneas de qualidade e de quantidade.

5 CONSIDERAÇÕES FINAIS

Analisar os dados de qualidade e a quantidade das águas é essencial para a definição de estratégias que busquem a conservação, a recuperação e o seu uso racional, com vistas ao abastecimento da população, redução dos conflitos pelo uso da água e direcionamento das atividades econômicas. Tendo isso em vista, o Igam, como órgão gestor dos recursos hídricos do estado de Minas Gerais, não vem medindo esforços para manter e expandir a rede de monitoramento da qualidade das águas em operação, desde 1997, sem interrupções, de forma a garantir o seu controle e proteção.

A deterioração da qualidade das águas superficiais, em Minas Gerais, é consequência, principalmente, dos lançamentos de esgotos domésticos e de efluentes industriais, além das atividades minerárias, pecuária, agricultura e o aporte de cargas difusas de origem urbana ou rural.

Para o Índice de Qualidade das Águas – IQA, que reflete, sobretudo, a contaminação por carga orgânica e fecal, verificou-se a predominância da condição da qualidade de água satisfatória (IQA Médio), seguido de qualidade boa (IQA Bom), com registro de 49% e 31% de ocorrências, respectivamente, comportamento semelhante ao observado ao longo da série histórica de monitoramento. Em relação às bacias hidrográficas, as piores condições foram registradas nas bacias dos Rios Itapemirim, Itaúnas, Peruípe, São Francisco e Grande, as quais apresentaram os maiores percentuais de IQA Ruim.

Em relação ao indicador CT, que indica a presença de contaminantes tóxicos, também observou-se predominância de ocorrência de CT Baixa ao longo de toda a série histórica, sendo que no ano de 2019 a CT Baixa representou 85% dos resultados. As piores condições foram observadas no rio das Velhas (SF5) e no rio Pará (SF2), onde 35% e 20% dos resultados estiveram na condição de CT Alta.

Em relação ao indicador IET, indicativo de enriquecimento por nutrientes, observou-se ampla predominância dos níveis de trofia mais baixos. De modo geral, nos últimos seis anos, os níveis de trofia podem ser considerados melhores do que nos anos anteriores a esse período. No entanto, observaram-se que as piores condições, em termos de trofia, ocorrem nas bacias do rio Itaúnas e do rio São Francisco, esta última influenciada principalmente pelos resultados das sub-bacias do rio das Velhas (SF5) e dos afluentes do rio Verde Grande (SF10).

Quanto ao percentual de amostras cujos valores violaram os limites legais da Deliberação Normativa COPAM/CERH-MG nº 01/08, para as respectivas classes de enquadramento, os cinco parâmetros que apresentaram o maior número de violações foram *Escherichia coli* (49%), ferro dissolvido (47%), alumínio dissolvido (32%), manganês total (32%) e fósforo total (26%), em 2019.

Considerando os indicativos de contaminação analisados, os contaminantes fecais apresentam o maior percentual de não conformidade em todo o estado, chegando a representar 72% dos pontos em desconformidade com o limite de classe. Em seguida o indicativo de enriquecimento orgânico, com 49% de ocorrências. Em relação aos indicativos de substâncias tóxicas, 26% das estações apresentaram desconformidade com o limite de classe em todo o Estado. Esses resultados evidenciam a relevância do impacto dos lançamentos de esgotos sanitários, sem tratamento ou com tratamento insuficiente, no comprometimento dos recursos hídricos mineiros, especialmente nas áreas urbanizadas.

Com relação à presença de cianobactérias, resultados insatisfatórios foram registradas nas bacias do rio das Velhas, Afluentes do Rio Verde Grande, Rio Grande, Rio Jequitinhonha, Rio Paraíba do Sul, rio Paranaíba e Rio Paraopeba. As maiores densidades de cianobactérias registradas ocorreram, sobretudo, na calha do rio das Velhas (nos municípios de Santana de Pirapama, Augusto de Lima e Corinto, Várzea

da Palma, Santo Hipólito e Lassance) e na bacia do rio Paraopeba (nos municípios de Ibirité e Três Marias). De modo geral, esses resultados refletem os impactos do aporte de nutrientes para corpos de água dessas bacias, proveniente, principalmente, de lançamento de esgotos domésticos e industriais, bem como das atividades de agropecuária desenvolvidas nessas regiões.

Os Ensaios Ecotoxicológicos foram realizados, no ano de 2019, em 194 estações da rede básica de monitoramento. Desde 2007 vem sendo observada predominância anual de efeito Não Tóxico nas amostras analisadas. Em 2019, o Efeito Agudo, que indica a letalidade dos organismos, foi observado em 2% das amostras, sendo este resultado encontrado nas bacias hidrográficas dos rios Médio/Baixo Jequitinhonha, Alto Rio Paranaíba, Afluentes do Rio Verde Grande, Paraopeba, Velhas e Jequitaí e Pacuí. De forma geral, os principais impactos sobre a qualidade das águas estão associados a lançamentos de esgotos domésticos e efluentes industriais de grandes centros urbanos, presentes nessas bacias.

A análise dos dados de carga de DBO e de fósforo total foi realizada para 206 estações de monitoramento. Em relação à DBO, as estações de monitoramento BV105 (rio das Velhas em Santa Luzia) e VG004 (rio Verde Grande em Montes Claros) foram aquelas em que os valores de carga e concentração de DBO foram os maiores registrados em 2019. Os maiores valores de cargas de fósforo total foram registrados nas estações SF023, no rio São Francisco no município de Ibiá e na estação SF019, também no rio São Francisco no município de Pirapora, resultados associados às condições de vazão registradas.

A partir dos resultados do monitoramento apresentados é evidente a importância da continuidade e incremento de ações de saneamento com a ampliação do tratamento de esgoto, melhoria das eficiências de remoção de carga orgânica e nutrientes e a disposição adequada de resíduos sólidos nos municípios mineiros. Percebe-se também que as atuais tecnologias aplicadas nos tratamentos de esgotos são insuficientes para promover a melhoria de qualidade de água (em termos de contaminação fecal e nutrientes), sendo necessários processos de tratamento mais avançados, em especial nas regiões mais adensadas do estado. Além disso, esforços direcionados ao controle das fontes de poluição difusas também são importantes, uma vez que são necessárias ações conjuntas de diversos segmentos do governo, do setor produtivo e da sociedade, no sentido de atenuar os impactos das atividades antrópicas e de promover ações de melhoria da qualidade das águas.

REFERÊNCIAS

AGÊNCIA NACIONAL DE ÁGUAS E SANEAMENTO BÁSICO - ANA. **Conjuntura dos Recursos Hídricos no Brasil: Informe 2020**. Agência Nacional de Águas - Brasília: ANA, 2020. 118p.

CANDADIAN COUCIL OF MINISTERS OF THE ENVIRONMENT. Canadian water quality guidelines for the protection of aquatic file: CCME Wanter Quality Index 1.0, User's Manual. **Canadian environmental quality guidelines**. Winnipeg: CCME, 2011.

CARLSON, R. E., 1977a. More complications in the chlorophyll-Secchi disk relationship. **LimnologyandOceanography**. 25:378-382.

Companhia Ambiental do Estado de São Paulo – CETESB. Índices de Qualidade das Águas, Critérios de Avaliação da Qualidade dos Sedimentos e Indicador de Controle de Fontes: **Apêndice B, Série Relatórios**. 2008.

CHRISTOFARO, Cristiano. Avaliação probabilística de risco ecológico de metais nas águas superficiais da Bacia do rio das Velhas - MG. 2009. 274 f. Tese (Doutorado em Saneamento, Meio Ambiente e Recursos Hídricos) - Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2009.

ESTEVES, FRANCISCO A. Eutrofização Artificial. In: ESTEVES, FRANCISO A. **Fundamentos de limnologia**. 2° Edição. Rio de Janeiro: Interciência LTDA, 1998. p. 504.

GROPPO, Juliano Daniel. Estudo de tendências nas series temporais de qualidade de água de rios do estado de São Paulo com diferentes graus de intervenção antrópica. 2005. 86 f. Dissertação (Mestrado em Ecologia de Agroecossistemas) – Escola Superior de Agricultura, Universidade de São Paulo, São Paulo, 2005.

INSTITUTO MINEIRO DE GESTÃO DAS ÁGUAS - IGAM. Resumo executivo: Monitoramento das Águas Superficiais de Minas Gerais em 2018. Instituto Mineiro de Gestão das Águas. Belo Horizonte: IGAM, 2019.

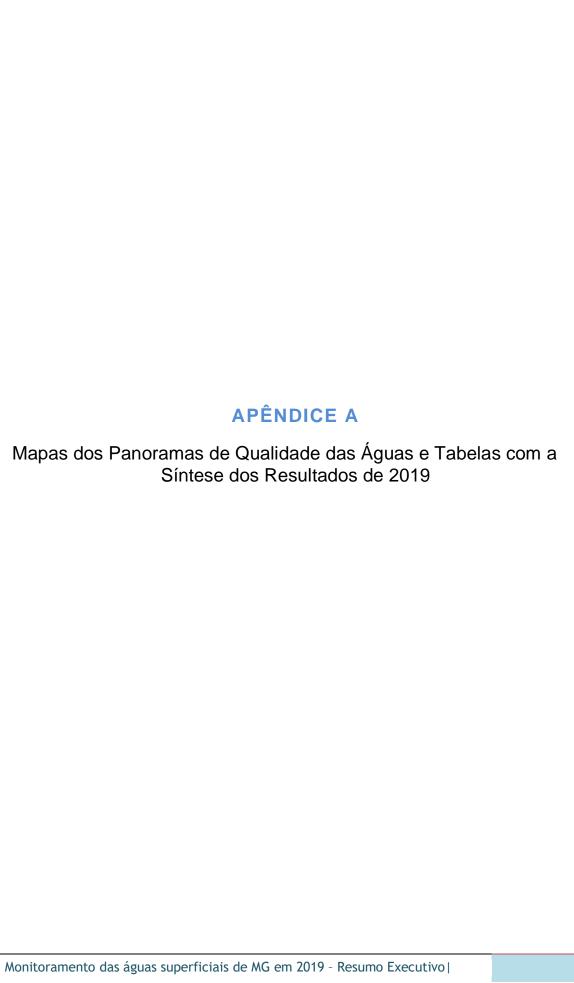
JUNQUEIRA, M.; ALVES, K.; PAPROCKI, H.; CAMPOS, M.; DE CARVALHO, M.; MOTA, H.; ROLLA, M. Índices bióticos para avaliação de qualidade de água de rios tropicais – síntese do conhecimento e estudo de caso: bacia do alto rio Doce. Revista Brasileira de Ciências Ambientais (Online), n. 49. 15-33. 3 dez. 2018.

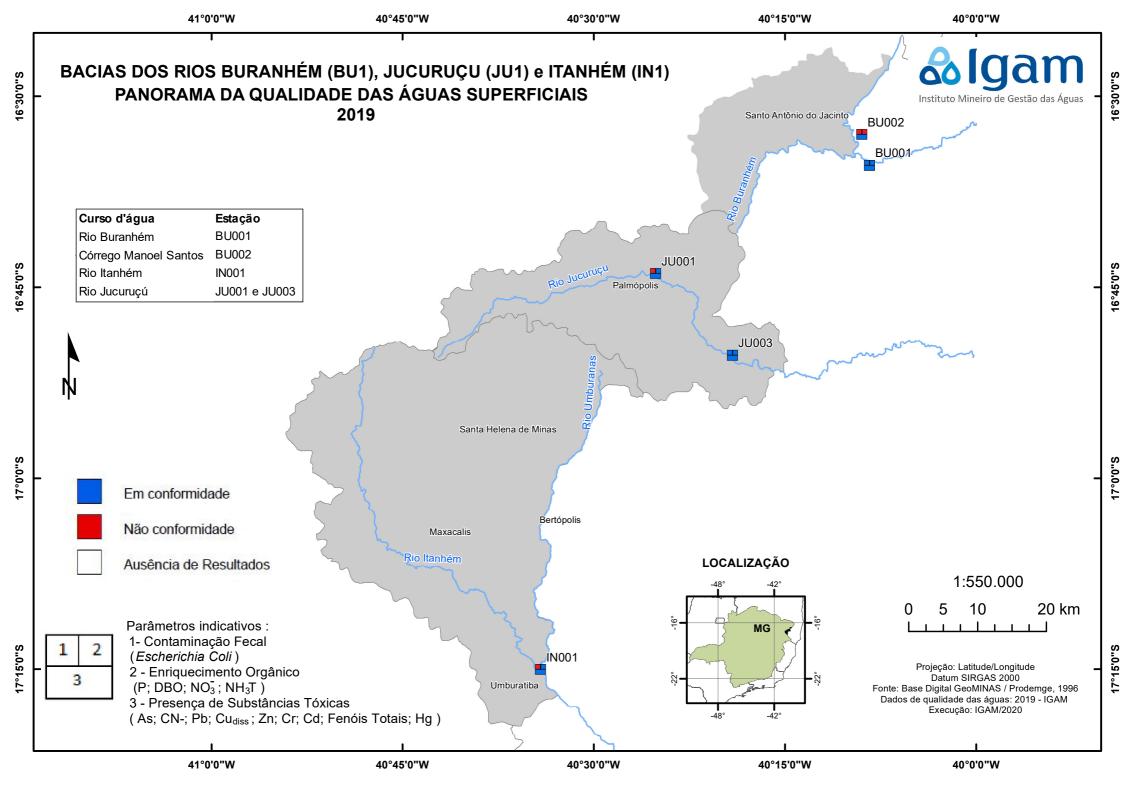
LAMPARELLI, M. C. Graus de trofia em corpos d'água do Estado de São Paulo: Avaliação dos métodos de monitoramento. São Paulo: USP, 2004. 237 p. Tese (Doutorado em Ciências na área de ecossistemas terrestres e aquáticos)- Programa de Pós-Graduação em Ciências, Instituto de Biociências, Universidade de São Paulo, São Paulo, 2004.

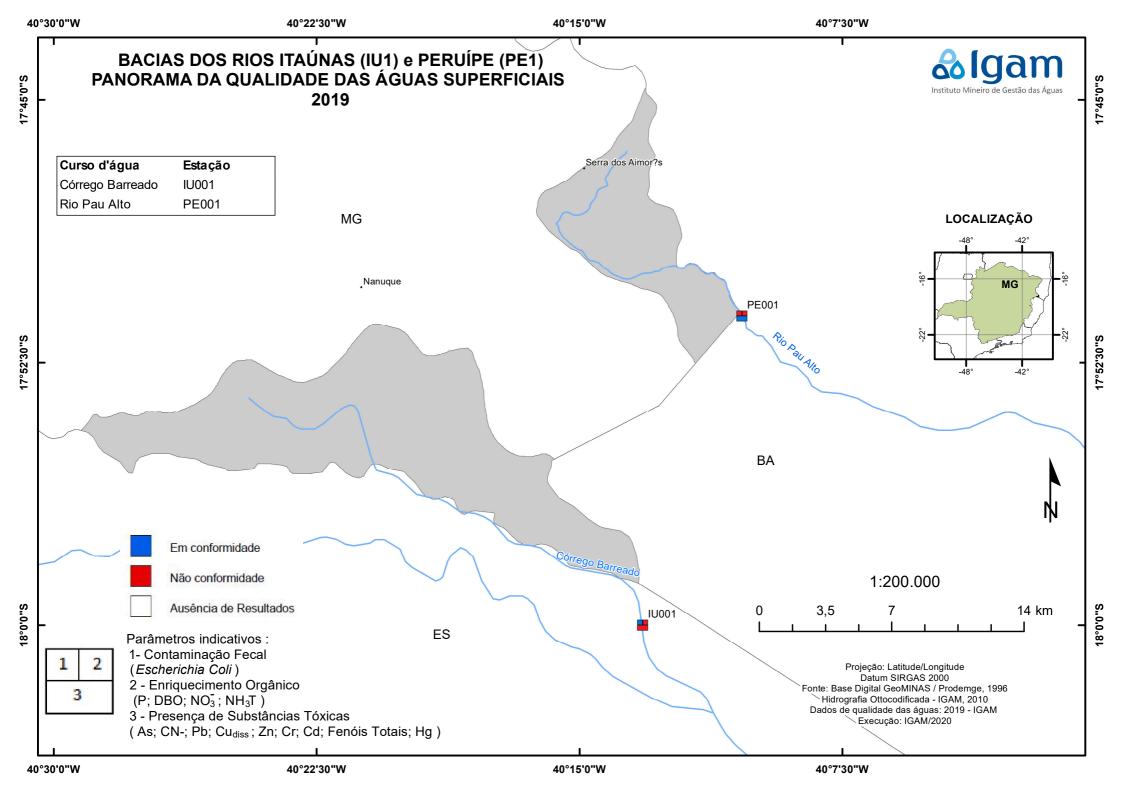
QUILBÉ, R.; ROUSSEAU, A. N.; DUCHEMIN, M.; POULIN, A.; GANGBAZO, G.; VILLENUEVE, J.P. Selecting a calculation method to estimate sediment and nutrient loads in streams: Application to the Beaurivage River (Québec, Canadá). Journal of hydrology, v. 326, p. 295-310, 2006.

SANT'ANNA, C. L.; AZEVEDO, M. T. P.; WERNER, V. R.; DOGO, C. R.; RIOS, F. R.; CARVALHO, L. R. Review of toxic species of Cyanobacteria in Brazil. **Algological Studies**, v. 126, p. 251-265, 2008.

TRINDADE, A. L. C.; ALMEIDA, K. C. B.; BARBOSA, P. E.; OLIVEIRA, S. C. Tendências temporais e espaciais da qualidade das águas superficiais da sub-bacia do Rio das Velhas, estado de Minas Gerais. **Engenharia Sanitária e Ambiental**, v.22, n.1, p.13-24, 2017.


TOLEDO-JR, A.P.;TALARICO, M.; CHINEZ, S.J.; AGUDO, E.G. A aplicação de modelos simplificados para a avaliação do processo da eutrofização em lagos e reservatórios tropicais. Congresso Brasileiro de Engenharia Sanitária e Ambiental. Balneário Camboriú, Santa Catarina. p. 1-34. 1983.


ANEXO A Unidades de medida dos parâmetros e os respectivos limites estabelecidos na Deliberação Normativa Conjunta COPAM/CERH-MG nº 01/2008


Day 2 tu .	LIMITE D	N COPAM / CERH - MG	- 01/2008	Unidade de
Parâmetro	Classe 1	Classe 2	Classe 3	Medida
pH	6 a 9	6 a 9	6 a 9	
Turbidez	40	100	100	NTU
Cor Verdadeira	Cor Natural	75	75	UPt
Sólidos Dissolvidos totais	500	500	500	mg/L
Sólidos em Suspensão totais	50	100	100	mg/L
Cloreto total	250	250	250	mg / L Cl
Sulfato total	250	250	250	mg/LSO4
Sulfeto*	0,002	0,002	0,3	mg/LS
Fósforo total	0.4	0.4	0.45	// 5
(ambiente lótico)	0,1	0,1	0,15	mg/LP
Nitrogênio amoniacal total	3,7 p/ pH < =7,5 2,0 p/ 7,5 <ph<=8,0 1,0="" <br="" p="">8,0<ph<=8,5 0,5="" p="" ph="">8,5</ph<=8,5></ph<=8,0>	3,7 p/ pH < =7,5 2,0 p/ 7,5 <ph<=8,0 1,0="" <br="" p="">8,0<ph<=8,5 0,5="" p="" ph="">8,5</ph<=8,5></ph<=8,0>	13,3 p/ pH <= 7,5 5,6 p/ 7,5 <ph<=8,0 2,2="" <br="" p="">8,0<ph<=8,5 1,0="" p="" ph="">8,5</ph<=8,5></ph<=8,0>	mg/LN
Nitrato	10	10	10	mg/LN
Nitrito	1	1	1	mg/LN
OD	> 6	> 5	> 4	mg / L
DBO	3	5	10	mg/L
Cianeto Livre	0,005	0,005	0,022	mg/LCN
Fenóis totais (substâncias que reagem com 4-aminoantiprina)	0,003	0,003	0,01	mg / L C6H5OH
Óleos e Graxas**	ausentes	ausentes	ausentes	mg / L
Substâncias Tensoativas (que	0,5	0,5	0,5	mg / L LAS
reage com o azul de metileno)	·		·	J J
Coliformes Termotolerantes	200	1000	4000	NMP / 100 ml
Alumínio Dissolvido	0,1	0,1	0,2	mg / L Al
Arsênio total	0,01	0,01	0,033	mg/LAs
Bário total	0,7	0,7	1	mg / L Ba
Boro total	0,5	0,5	0,75	mg/LB
Cádmio total	0,001	0,001	0,01	mg/L Cd
Chumbo total	0,01	0,01	0,033	mg / L Pb
Cobre Dissolvido	0,009	0,009	0,013	mg / L Cu
Cromo total	0,05	0,05	0,05	mg / L Cr
Ferro Dissolvido	0,3	0,3	5	mg/LFe
Manganês total	0,1	0,1	0,5	mg / L Mn
Mercúrio total	0,2	0,2	2	μg/L Hg
Níquel total	0,025	0,025	0,025	mg / L Ni
Selênio total	0,01	0,01	0,05	mg / L Se
Zinco total	0,18	0,18	5	mg / L Zn
Clorofila a	10	30	60	μg/L
Densidade de Cianobactéria	20000	50000	100000	cel/ml

^{*} Consideraram-se como violação as ocorrências maiores que 0,5 mg/L (limite de detecção do método analítico)

^{**} Consideraram-se como violação as ocorrências maiores que 15mg/L

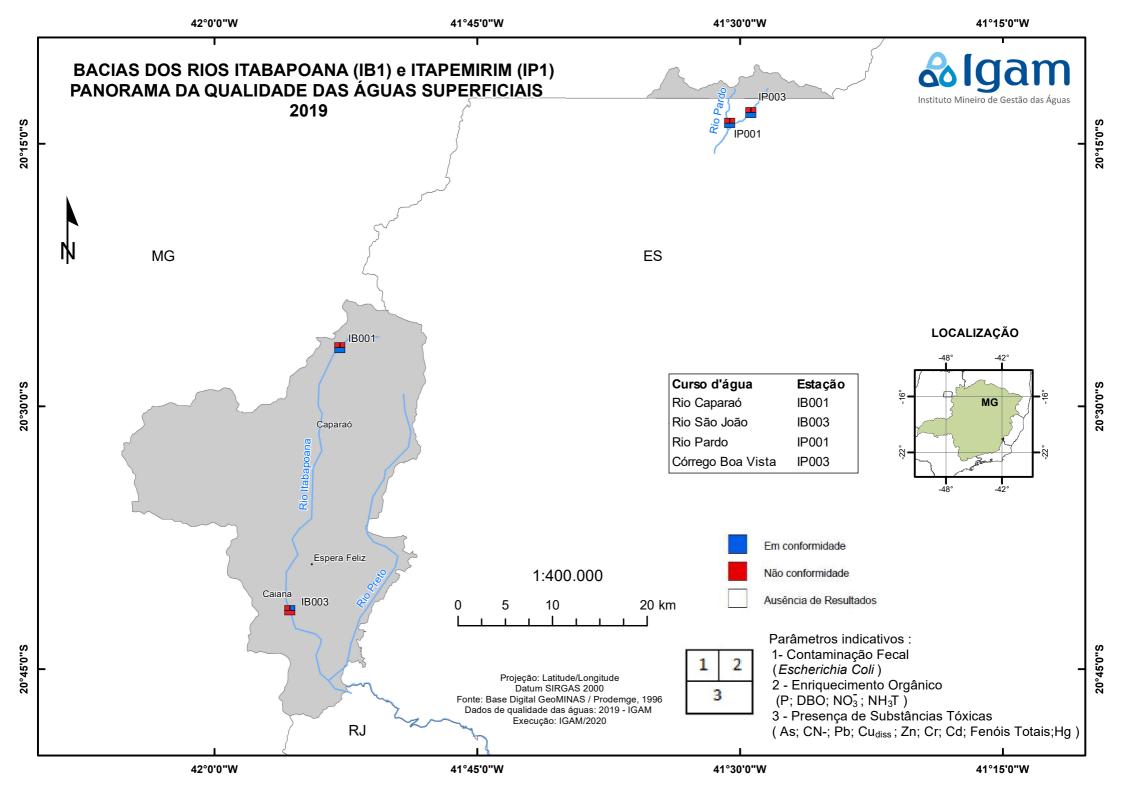


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ăо	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QA	(CT	IE	Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
marogranica	Thurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
Rio Buranhém	BU1 - Rio Buranhém	Rio Buranhém	BU001	GUARATINGA (BA), SANTO ANTÔNIO DO JACINTO	71,9	72,7	BAIXA	BAIXA	54,2	54,4		(3)				
	Barannen		BU002	SANTO ANTÔNIO DO JACINTO	58	53,9	BAIXA	BAIXA	55,6	56,5		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
Rio Itanhém	IN1 - Rio Itanhém	Rio Itanhém	IN001	UMBURATIBA	65,2	65,6	MÉDIA	BAIXA	52,2	50,8		\odot	\odot	Escherichia coli.		
Rio Jucuruçu	JU1 - Rio	Rio Jucuruçú	JU001	PALMÓPOLIS	59,3	62,9	BAIXA	BAIXA	50,5	49,1		(<u>(;)</u>		Escherichia coli.		
Nio Jucuruçu	Jucuruçu	Nio Jucuruçu	JU003	PALMÓPOLIS	68,8	74,4	BAIXA	BAIXA	51,9	50,1	\odot	\odot				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[😕] O indicador piorou ou manteve-se na pior condição de qualidade

 $[\]hbox{\it ---} To dos\ os\ resultados\ dos\ indicativos\ correspondentes\ estiveram\ em\ conformidade$

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20)19	Co	mparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	uas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QΑ	(CT	IE	ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
niurografica	niurografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
Rio Itaúnas	IU1 - Rio Itaúnas	Córrego Barreado	IU001	MUCURI (BA)	48,8	49,3	BAIXA	BAIXA	55,9	67,2		(<u>(;</u>	(3)		Demanda Bioquímica de Oxigênio, Fósforo total.	Cianeto Livre.
Rio Peruípe	PE1 - Rio Peruípe	Rio Pau Alto	PE001	SERRA DOS AIMORÉS	53,2	44,4	BAIXA	BAIXA	52,2	55,1	(3)	(;)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	

0	O indicador melhorou ou manteve-se na	a melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade

[😕] O indicador piorou ou manteve-se na pior condição de qualidade

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	(CT	IE	ĒΤ	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Hidrografica	Hidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
Rio Itabapoana	IB1 -	Rio Caparaó	IB001	ALTO CAPARAÓ	55	52,3	MÉDIA	BAIXA	52,6	56,4		(<u>:</u>)		Escherichia coli.	Fósforo total.	
Nio itabapoaria	Itabapoana	Rio São João (IB1)	IB003	CAIANA	51,4	51	MÉDIA	BAIXA	52,8	53,7		(<u>C</u>)		Escherichia coli.		Chumbo total.
		Córrego Boa Vista	IP003	IBATIBA (ES)	53,1	53,1	MÉDIA	BAIXA	51,3	51,9		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio.	
Rio Itapemirim	IP1 - Rio Itapemirim	Rio Pardo (IP1)	IP001	IBATIBA (ES)	37,8	34,2	MÉDIA	A BAIXA	55,3	57,3	••	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	

3	O indicador melhorou ou manteve-se na	melhor	condição	de qualidade
---	---------------------------------------	--------	----------	--------------

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

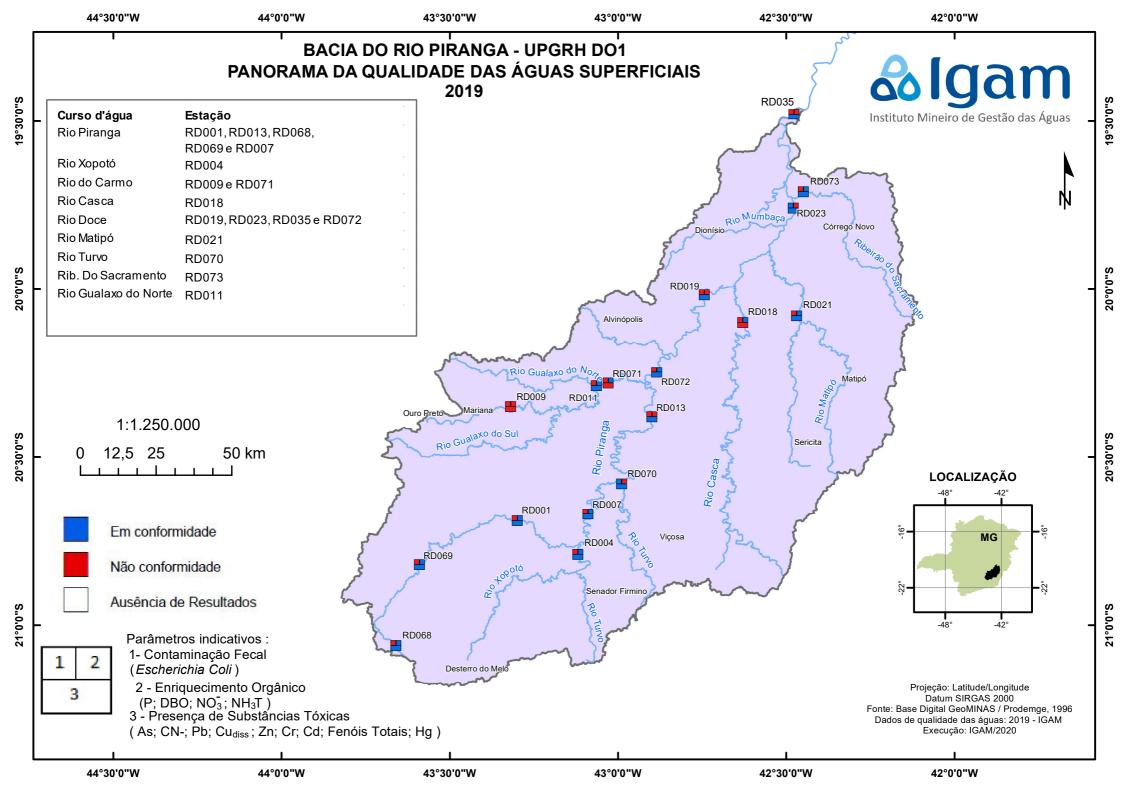
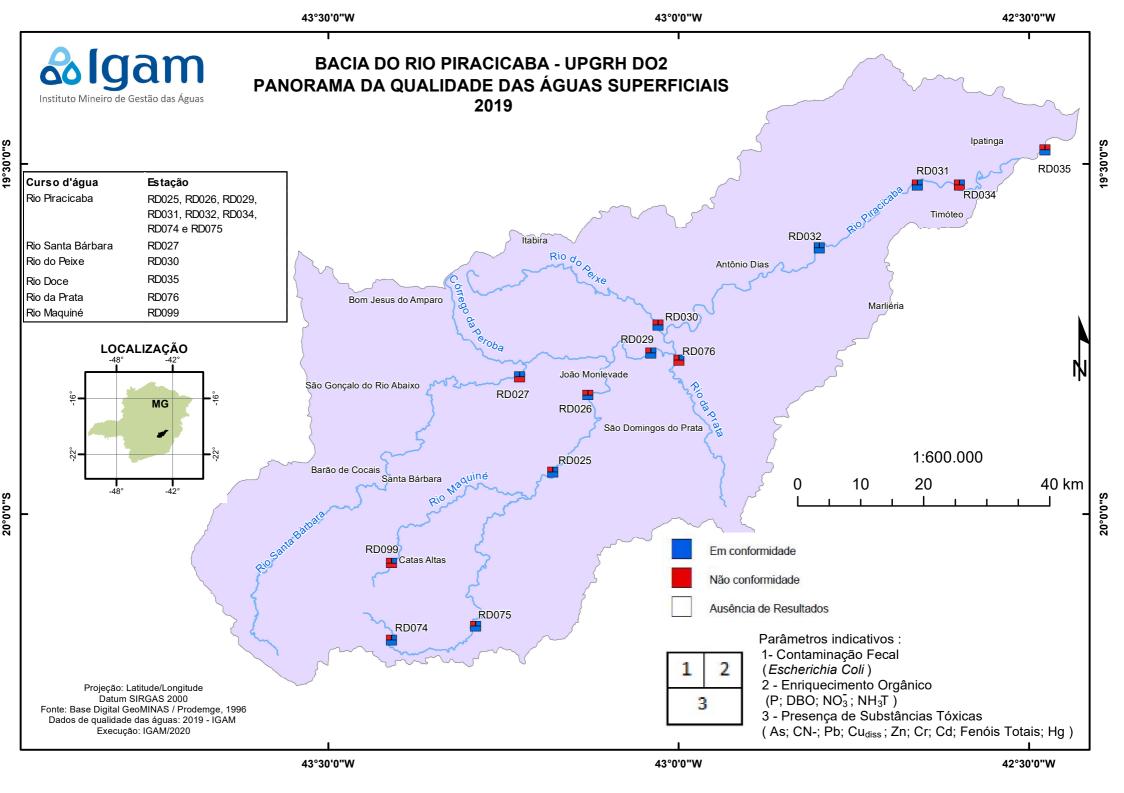


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
					Re	esultado	s dos in	dicadore		_	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Bacia	Circunscrição	Corpo de água	Estação	Municípios	IC	QA		СТ	IE	Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Hidrográfica	Hidrográfica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão do Sacramento	RD073	BOM JESUS DO GALHO, PINGO- D'ÁGUA	61,6	63,3	BAIXA	BAIXA	49,4	49,4		\odot		Escherichia coli.		
		Rio Casca	RD018	RIO CASCA, SÃO PEDRO DOS FERROS	59,1	67,8	BAIXA	ALTA	51,5	49,6		(3)		Escherichia coli.		Cobre dissolvido.
		Rio do Carmo	RD009	MARIANA	59,5	56,4	ALTA	ALTA	55,6	56,9		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Arsênio total.
Rio Doce	DO1 - Rio	Nio do Carmo	RD071	BARRA LONGA	59	63,7	ALTA	MÉDIA	51,6	50		\odot	•••	Escherichia coli.		Fenóis totais.
NIO DOCE	Piranga	Rio Gualaxo do Norte	RD011	BARRA LONGA	61,8	65,5	ALTA	BAIXA	51,6	50,4		\odot		Escherichia coli.		
			RD019	RIO CASCA, SÃO DOMINGOS DO PRATA	60,5	70,1	BAIXA	BAIXA	52,4	51,4	\odot	(<u>()</u>	(<u>()</u>	Escherichia coli.	Fósforo total.	
		Rio Doce	RD023	MARLIÉRIA, PINGO-D'ÁGUA	64,7	70,9	ALTA	BAIXA	51,7	51,5	\odot	\odot			Fósforo total.	
			RD072	RIO DOCE, SANTA CRUZ DO ESCALVADO		59,5	ALTA	BAIXA	53,4	51,6	•••	\odot	\odot	Escherichia coli.		

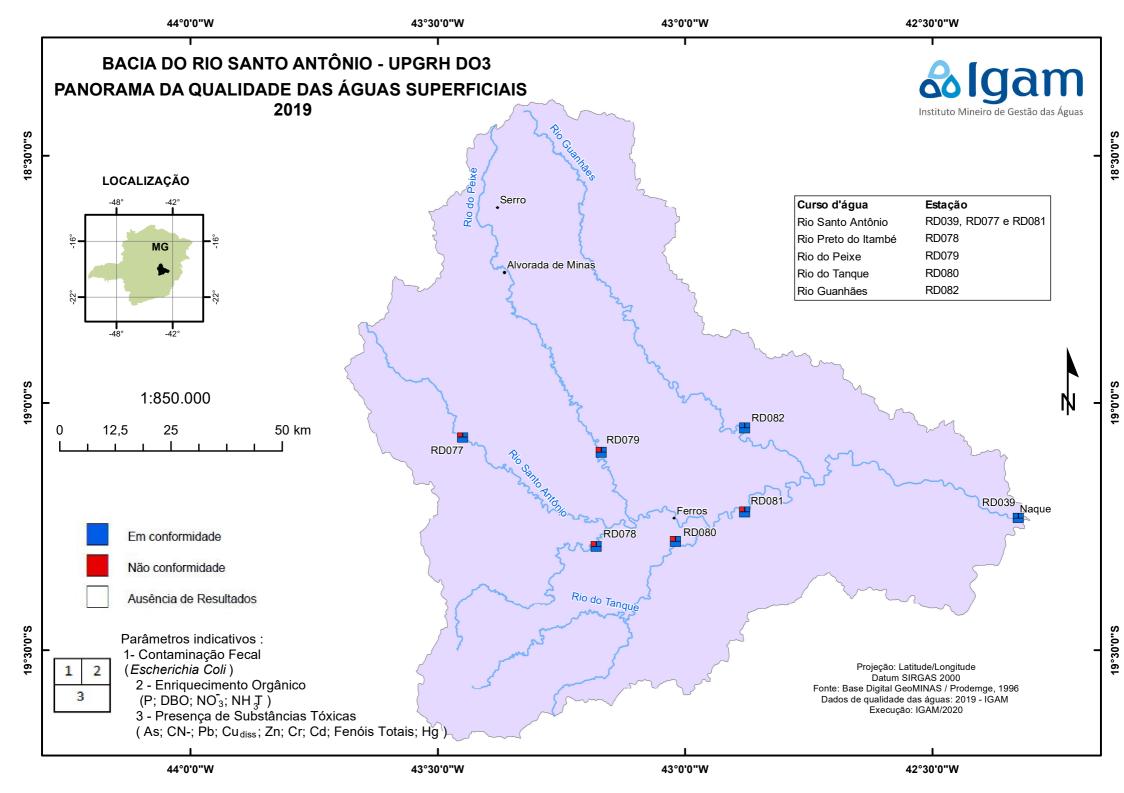

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
					Re	esultado		dicadore	-	_	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Bacia	Circunscrição	Corpo de água	Estação	Municípios	10	QΑ	(CT .	II	Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Hidrográfica	Hidrográfica		•		2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Matipó	RD021	RAUL SOARES	59,1	56,4	BAIXA	BAIXA	52,8	52,6		③		Escherichia coli.		
			RD001	PIRANGA	65,3	64,8	BAIXA	BAIXA	51,9	49,3		③		Escherichia coli.		
			RD007	PORTO FIRME	65,2	67,2	BAIXA	BAIXA	51,6	50,7		③		Escherichia coli.		
	DO1 - Rio	Rio Piranga	RD013	PONTE NOVA	52,5	56,3	BAIXA	BAIXA	53	52,5		(<u>i</u>)		Escherichia coli.	Fósforo total.	
Rio Doce	Piranga		RD068	RESSAQUINHA	56,9	59	BAIXA	BAIXA	50,6	49		(<u>i</u>)		Escherichia coli.		
			RD069	RIO ESPERA, SANTANA DOS MONTES	69,9	66,8	BAIXA	BAIXA	50,9	50,9		③		Escherichia coli.		
		Rio Turvo	RD070	GUARACIABA	65,3	67,6	ALTA	BAIXA	54	53,4		(<u>()</u>			Fósforo total.	
		Rio Xopotó (DO1)	RD004	PRESIDENTE BERNARDES	69,9	71,4	MÉDIA	BAIXA	51,2	51,4	\odot	\odot		Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade


								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore		_		omparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		ET		lores 201			Parâmetros indicativos de:	
	8				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio da Prata (DO2)	RD076	NOVA ERA	69,6	67,4	BAIXA	ALTA	50,1	49,3				Escherichia coli.		Cobre dissolvido.
		Rio do Peixe (DO2)	RD030	NOVA ERA	59,5	54,5	BAIXA	BAIXA	57,1	57,6		(3)		Escherichia coli.	Fósforo total.	
		Rio Doce	RD035	IPATINGA	51,7	58,2	ALTA	BAIXA	52,9	53,2		(<u>:</u>	•••	Escherichia coli.	Fósforo total.	
		Rio Maquiné	RD099	CATAS ALTAS	69,7	71,2	BAIXA	MÉDIA	48,8	49,1	\odot	(3)	•••	Escherichia coli.		Zinco total.
			RD025	RIO PIRACICABA	63,8	62,6	BAIXA	BAIXA	49,3	49,6		(<u>()</u>		Escherichia coli.		
			RD026	JOÃO MONLEVADE	60,8	56,8	BAIXA	BAIXA	52,6	52		\odot		Escherichia coli.	Fósforo total.	
Rio Doce	DO2 - Rio Piracicaba		RD029	NOVA ERA	61	60	BAIXA	BAIXA	51,4	50		(<u>:</u>)		Escherichia coli.		
	T il deledad	Rio Piracicaba	RD031	CORONEL FABRICIANO, TIMÓTEO	66,6	63,6	BAIXA	BAIXA	49,7	49,4		\odot		Escherichia coli.		
		NIO FII acicaba	RD032	ANTÔNIO DIAS	69	68,8	BAIXA	BAIXA	50,2	48,8		(<u>:</u>)				
			RD034	CORONEL FABRICIANO, TIMÓTEO	55	56,9	BAIXA	ALTA	52,1	50,5		(3)	\odot	Escherichia coli.		Fenóis totais.
			RD074	MARIANA	67,6	73,6	BAIXA	BAIXA	50,2	49,1	\odot	(3)		Escherichia coli.		
			RD075	ALVINÓPOLIS	64,5	65,8	BAIXA	BAIXA	49,1	48,8	<u>••</u>	\odot	•••	Escherichia coli.		
		Rio Santa Bárbara	RD027	SÃO GONÇALO DO RIO ABAIXO	68,9	78,9	BAIXA	BAIXA	49,4	48,8	\odot	\odot	•••			Cobre dissolvido.

② O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição					esultado QA		dicadore)19 ET		omparaçã lores 201		Mapa do Pa	norama de Qualidade das Águ Parâmetros indicativos de:	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		2019	2018			2019	IQA	CT CT	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio do Peixe (DO3)	RD079	CARMÉSIA	67,6	68,6	BAIXA	BAIXA	49,4	50		\odot		Escherichia coli.		
		Rio do Tanque	RD080	FERROS	73,6	72,2	BAIXA	BAIXA	50,1	49,5		\odot		Escherichia coli.		
		Rio Guanhães	RD082	DORES DE GUANHÃES	70,8	74,9	BAIXA	BAIXA	51,4	50,8		(;)				
Rio Doce	DO3 - Rio Santo Antônio	Rio Preto do Itambé	RD078	SÃO SEBASTIÃO DO RIO PRETO	72	72,4	BAIXA	BAIXA	51,8	49,3		\odot		Escherichia coli.		
			RD039	NAQUE	69,4	74,8	BAIXA	BAIXA	50,7	50,2	\odot	(;)				
		Rio Santo Antônio (DO3)	RD077	CONCEIÇÃO DO MATO DENTRO	70,2	71,8	BAIXA	BAIXA	50,2	51		(i)		Escherichia coli.		
			RD081	FERROS	67,6	73,2	BAIXA	BAIXA	51,4	49,7	\odot	\odot	•••	Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

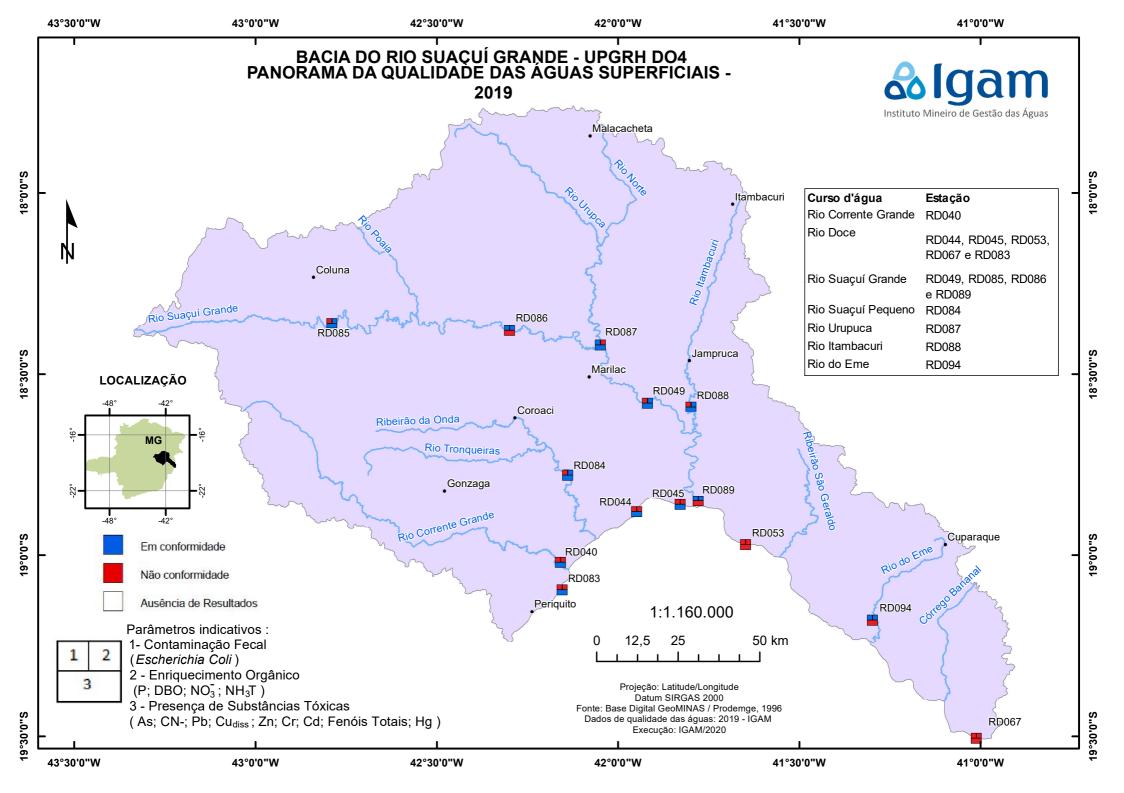


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

-									NDICAD					PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore				omparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT	IE			ores 201			Parâmetros indicativos de:	
- man ognamea	···a··og·a···oa				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Corrente Grande	RD040	GOVERNADOR VALADARES, PERIQUITO	76,9	82,3	BAIXA	BAIXA	52,9	52,6	•••	\odot		Escherichia coli.	Fósforo total.	
		Rio do Eme	RD094	RESPLENDOR	70,5	69,8	BAIXA	ALTA	54	52,2			•••			Cobre dissolvido.
			RD044	GOVERNADOR VALADARES	55,9	60,4	ALTA	BAIXA	52	51,4		\odot	\odot	Escherichia coli.	Fósforo total.	
			RD045	GOVERNADOR VALADARES	59,7	65,2	BAIXA	BAIXA	52,7	51,4		(\odot	Escherichia coli.	Fósforo total.	
		Rio Doce	RD053	GALILÉIA, TUMIRITINGA	63,4	67,8	ALTA	BAIXA	52,7	52,6		(Escherichia coli.	Fósforo total.	Chumbo total.
	Rio Doce DO4 - Rio Suaçuí Grande		RD083	FERNANDES TOURINHO, PERIQUITO	63,8	71	ALTA	BAIXA	52,4	52,5	\odot	\odot	•••	Escherichia coli.	Fósforo total.	
Rio Doce		Rio Itambacuri	RD088	FREI INOCÊNCIO	66,5	67,4	BAIXA	BAIXA	55,7	51,9		\odot	\odot	Escherichia coli.		
			RD049	FREI INOCÊNCIO, MATHIAS LOBATO	66	69,7	BAIXA	BAIXA	53,3	49,3	•••	(3)	(:)	Escherichia coli.		
		Rio Suaçuí Grande	RD085	COLUNA, SÃO JOÃO EVANGELISTA	63,5	68,4	BAIXA	BAIXA	49,9	50,5		\odot	•••	Escherichia coli.		
	Rio Suaç		RD086	SANTA MARIA DO SUAÇUÍ, VIRGOLÂNDIA		81,2	BAIXA	ALTA	52,6	50,8	•••		<u>©</u>			Cobre dissolvido.
			RD089	GOVERNADOR VALADARES	74,6	73,6	BAIXA	MÉDIA	52,5	50,8			\odot			Cobre dissolvido.
		Rio Suaçuí Pequeno	RD084	GOVERNADOR VALADARES	69,2	71,1	MÉDIA	BAIXA	50,7	48,8	\odot	\odot		Escherichia coli.		
		Rio Urupuca	RD087	ITAMBACURI, SÃO JOSÉ DA SAFIRA	68,6	72,8	BAIXA	BAIXA	52,2	52,8	\odot	<u></u>			Fósforo total.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

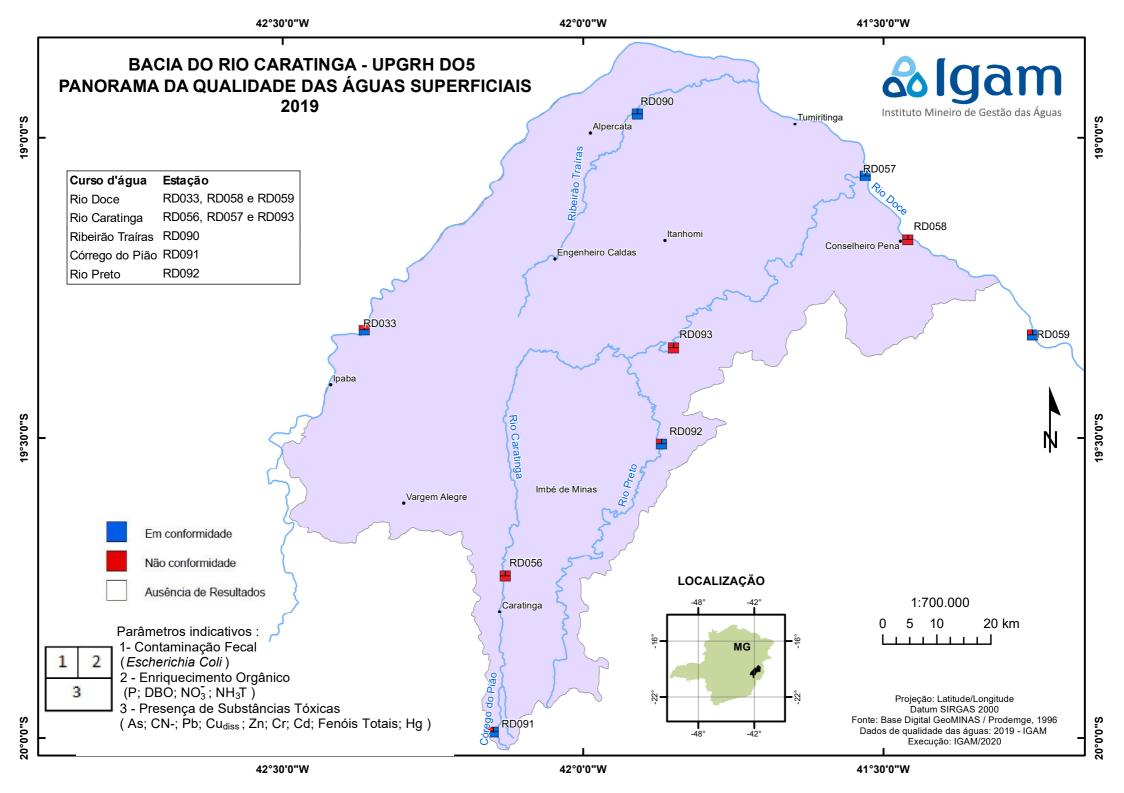


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição				Re	esultado	s dos in	dicadore		_	Co	omparaç	ão	Mapa do Panorama de Qualidade das Águas em 2019			
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		Т	Indicad	lores 201	.8/2019	Parâmetros indicativos de:			
Thur ogranica	marogranea				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
		Córrego do Pião	RD091	SANTA BÁRBARA DO LESTE	57,8	51,3	ALTA	BAIXA	50,3	54,7	•••	\odot		Escherichia coli.			
		Ribeirão Traíras	RD090	ALPERCATA, TUMIRITINGA	73	75,1	BAIXA	BAIXA	53,7	51		\odot	\odot				
			RD056	CARATINGA	40,6	33,3	ALTA	ALTA	61,2	61,2		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre.	
Rio Doce	DO5 - Rio Caratinga	Rio Caratinga	RD057	CONSELHEIRO PENA	71,6	75,3	BAIXA	BAIXA	54,1	52,3		\odot	•••				
			RD093	TARUMIRIM	67,8	58,7	ALTA	MÉDIA	50,3	53,8		\odot		Escherichia coli.	Fósforo total.	Cobre dissolvido.	
		Rio Doce	RD033	BELO ORIENTE, BUGRE	51,4	55,7	ALTA	BAIXA	53	53,6		\odot		Escherichia coli.	Fósforo total.		
		Mo Doce	RD058	CONSELHEIRO PENA	59,8	62,6	ALTA	ALTA	52,9	52,6		(3)	•••	Escherichia coli.	Fósforo total.	Cádmio total.	
		Rio Preto (DO5)	RD092	INHAPIM	70	57,5	ALTA	BAIXA	49	51,8		(<u>:</u>)		Escherichia coli.			

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade $\,$

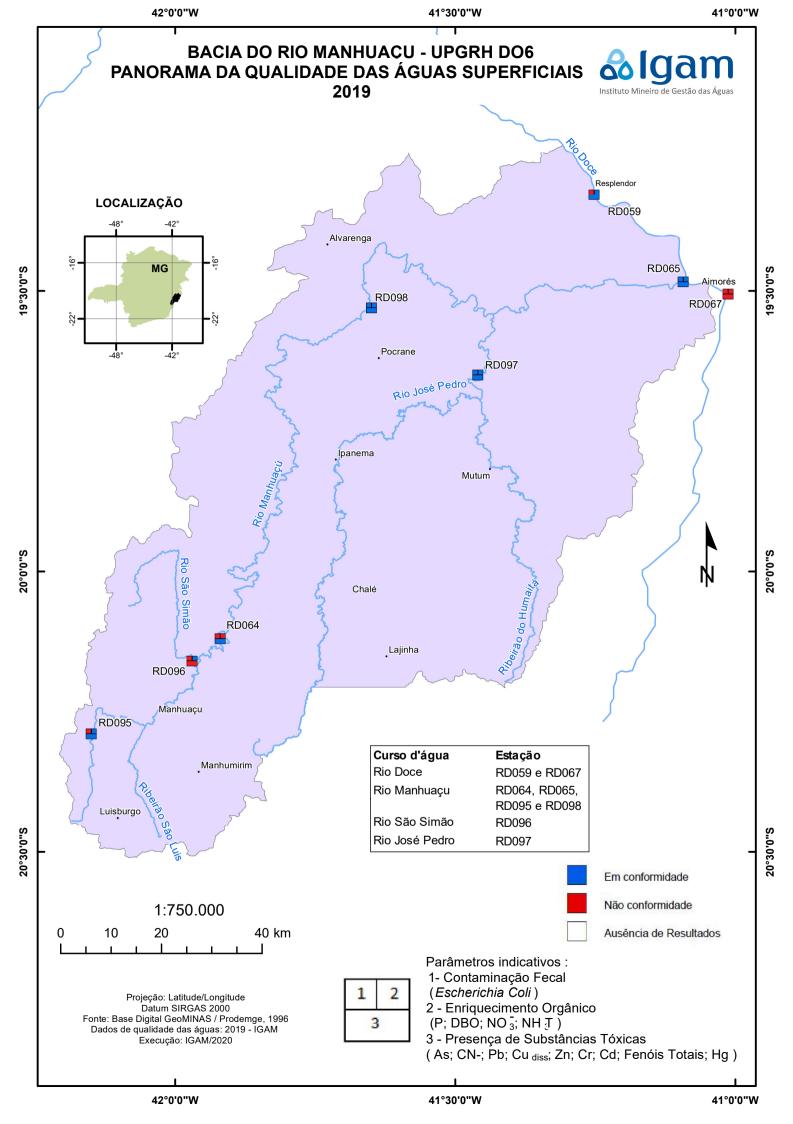


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição				Re	esultado	s dos in	dicadore			Co	mparaç	ão	Mapa do Panorama de Qualidade das Águas em 2019			
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT .	IE		Indicadores 2018/2019			Parâmetros indicativos de:			
Thur ogranica	marogranea				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
			RD059	RESPLENDOR	61,4	66,7	ALTA	BAIXA	53,7	52,5		(<u>i</u>)		Escherichia coli.			
		Rio Doce	RD067	AIMORÉS, BAIXO GUANDU (ES)	63,2	68,3	ALTA	BAIXA	52,6	51,9		③		Escherichia coli.	Fósforo total.	Cobre dissolvido, Zinco total.	
		Rio José Pedro	RD097	POCRANE	67,1	76,3	MÉDIA	BAIXA	51,7	50,7	\odot	(<u>:</u>)					
Rio Doce	DO6 - Rio		RD064	SANTANA DO MANHUAÇU	68,1	65,8	BAIXA	BAIXA	50,1	50,2		③		Escherichia coli.	Fósforo total.		
KIO DOCE	Manhuaçú		RD065	AIMORÉS	77,4	77,6	MÉDIA	BAIXA	51,9	49,8		(3)					
	Rio Manh	Rio Manhuaçu	RD095	MANHUAÇU, SÃO JOÃO DO MANHUAÇU		66,8	MÉDIA	BAIXA	51	51,7		\odot		Escherichia coli.			
			RD098	INHAPIM, POCRANE	73,2	77,7	MÉDIA	BAIXA	51,3	50,1		(<u>()</u>					
		Rio São Mateus (DO6)	RD096	MANHUAÇU, SIMONÉSIA	61,2	62,5	MÉDIA	ALTA	49,1	51		(3)		Escherichia coli.		Cobre dissolvido.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade $\,$

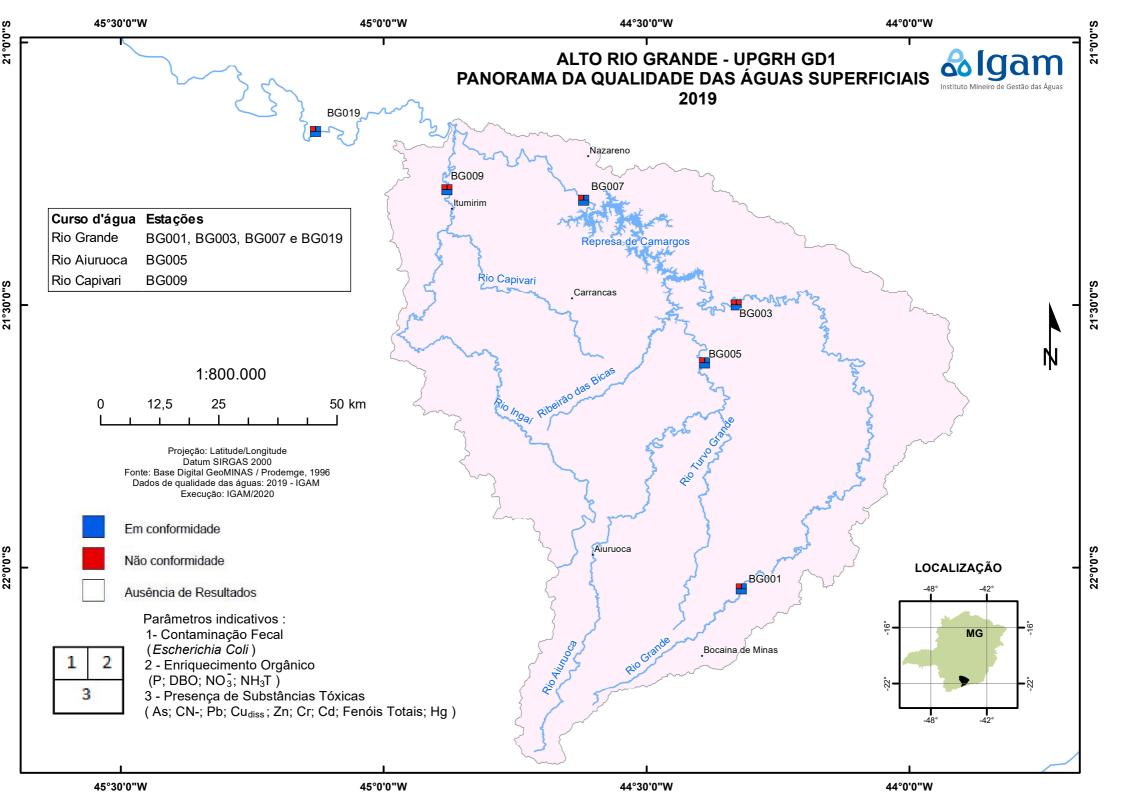


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ão	Mapa do Panorama de Qualidade das Águas em 2019			
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		IET		ores 201	8/2019	Parâmetros indicativos de:			
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
			BG004	AIURUOCA	61,7	59,9	BAIXA	BAIXA	50,8	52,2		\odot		Escherichia coli.			
	Rio A		BG005	ANDRELÂNDIA, SÃO VICENTE DE MINAS	64,3	64,9	BAIXA	BAIXA	51	51,1		\odot	•••	Escherichia coli.			
			BG006	ALAGOA	62,1	63,6	BAIXA	BAIXA	52,4	51,6		③	\odot	Escherichia coli.			
Rio Grande	GD1 - Alto Rio	Rio Capivari	BG009	ITUMIRIM, LAVRAS	70,5	65,1	BAIXA	BAIXA	49,1	51,4		(<u>i</u>)		Escherichia coli.	Fósforo total.		
	Grande	Rio Turvo Grande	BG002	ANDRELÂNDIA	70,5	67	BAIXA	BAIXA	53,3	52,4		\odot	•••	Escherichia coli.			
		Rio Grande	BG001	LIBERDADE	66,8	64,4	BAIXA	BAIXA	49,3	50,8		\odot	•••	Escherichia coli.			
			BG003	MADRE DE DEUS DE MINAS	62,1	60,1	BAIXA	BAIXA	50,1	51,8		(<u>:</u>)		Escherichia coli.	Fósforo total.		
			BG007	ITUTINGA, NAZARENO	78,6	73,8	BAIXA	BAIXA	53,2	53		\odot	•••	Escherichia coli.			

② O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

				II	NDICAD	ORES			PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL							
Bacia	Circunscrição							dicadore				omparaçã		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
- mar ogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Caieiro	BG008	BARBACENA	49,2	42	ALTA	ALTA	57,2	61,5		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Rio das Mortes	BG011	BARBACENA	63,9	62,9	BAIXA	BAIXA	51,2	50,7		\odot		Escherichia coli.		
			BG012	BARBACENA	65,9	68	BAIXA	BAIXA	52	52		(<u>i</u>)		Escherichia coli.		
			BG013	BARROSO	51,4	52,4	BAIXA	MÉDIA	53,4	53,5		(3)		Escherichia coli.	Fósforo total.	Fenóis totais.
	GD2 - Rio das		BG014	BARROSO	63,9	63,6	BAIXA	BAIXA	53,7	54,6		(<u>i</u>)		Escherichia coli.	Fósforo total.	
Rio Grande	Mortes e Rio Jacaré		BG015	RITÁPOLIS, SÃO JOÃO DEL REI	58,2	57	ALTA	BAIXA	52,1	53,1		(<u>(</u>)		Escherichia coli.		
			BG017	BOM SUCESSO, IBITURUNA	62,1	66,8	BAIXA	BAIXA	53,2	53,7		(<u>i</u>)		Escherichia coli.	Fósforo total.	
		Rio do Cervo	BG018	NEPOMUCENO	69,1	65,6	BAIXA	BAIXA	49,9	51,8		(<u>i</u>)		Escherichia coli.	Fósforo total.	
		Rio Jacaró	BG020	SÃO FRANCISCO DE PAULA	60,1	61	BAIXA	BAIXA	52	52,4		(<u>(</u>)		Escherichia coli.	Fósforo total.	
		Rio Jacaré	BG021	CAMPO BELO, CANA VERDE	59,6	61,8	BAIXA	ALTA	51,9	52		(3)	(3)	Escherichia coli.		Cádmio total.
		Rio Grande	BG019	LAVRAS, RIBEIRÃO VERMELHO	67,2	67,9	BAIXA	BAIXA	50,9	51,9	•••	\odot		Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

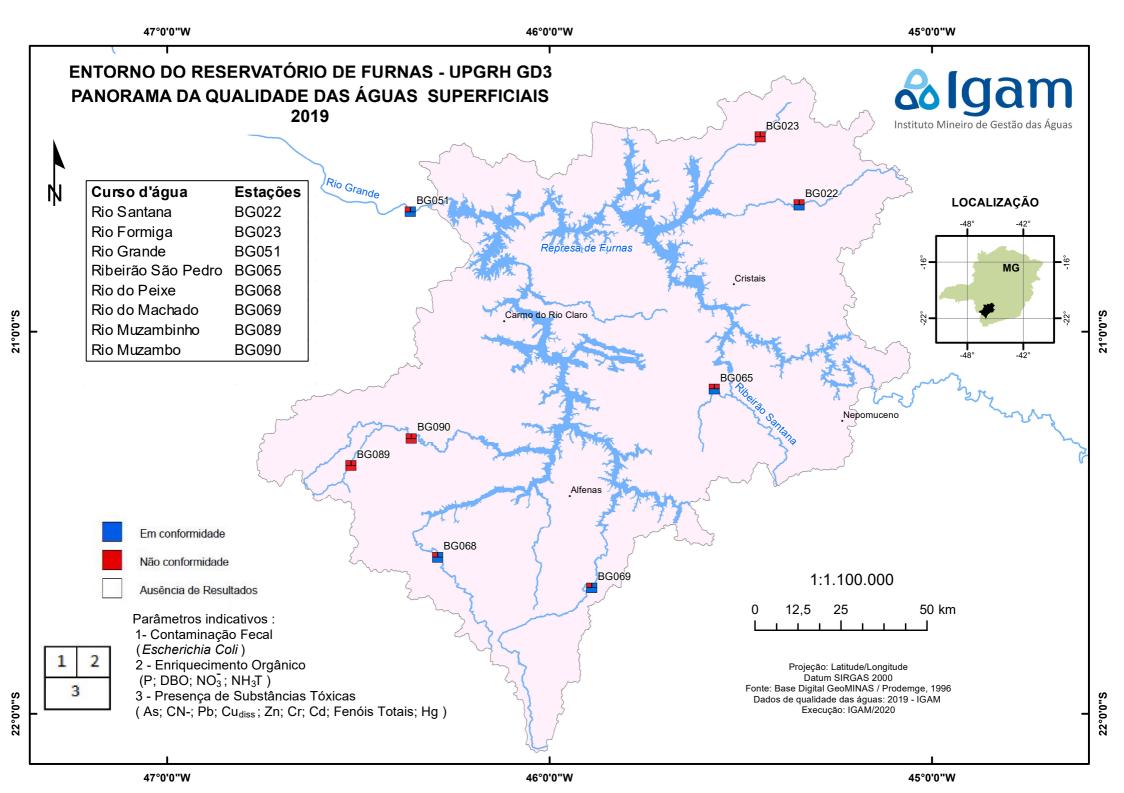


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Comparação			Mapa do Panorama de Qualidade das Águas em 2019			
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QA	(CT	IET		Indicadores 2018/2019			Parâmetros indicativos de:			
Tildiografica	Tilulogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
		Ribeirão São Pedro (GD3)	BG065	BOA ESPERANÇA	74,8	64,5	BAIXA	BAIXA	49,3	52,6		(<u>:</u>)	(3)	Escherichia coli.	Fósforo total.		
		Rio do Machado	BG069	MACHADO	56,8	55,6	BAIXA	BAIXA	53,5	53,7		(<u>i</u>)	•••	Escherichia coli.			
		Rio do Peixe (GD3)	BG068	BOTELHOS	70,9	66,7	BAIXA	BAIXA	50,7	52,3		(<u>i</u>)	(3)	Escherichia coli.			
Rio Grande	GD3 - Entorno do Reservatório de Furnas	Rio Formiga	BG023	FORMIGA	44,8	45,2	ALTA	MÉDIA	60,6	58,6		(3)	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Chumbo total, Cianeto Livre, Fenóis totais.	
		Rio Muzambinho	BG089	MUZAMBINHO	46,3	48,4	BAIXA	MÉDIA	55,5	54,5		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total, Zinco total.	
		Rio Muzambo	BG090	MONTE BELO	57,9	57,1	BAIXA	MÉDIA	53	53,8		(3)	•••	Escherichia coli.	Fósforo total.	Chumbo total.	
		Rio Santana (GD3)	BG022	FORMIGA	67,1	63,3	BAIXA	BAIXA	50,4	53,3		(<u>:</u>)	(3)	Escherichia coli.	Fósforo total.		

② O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[🔞] O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

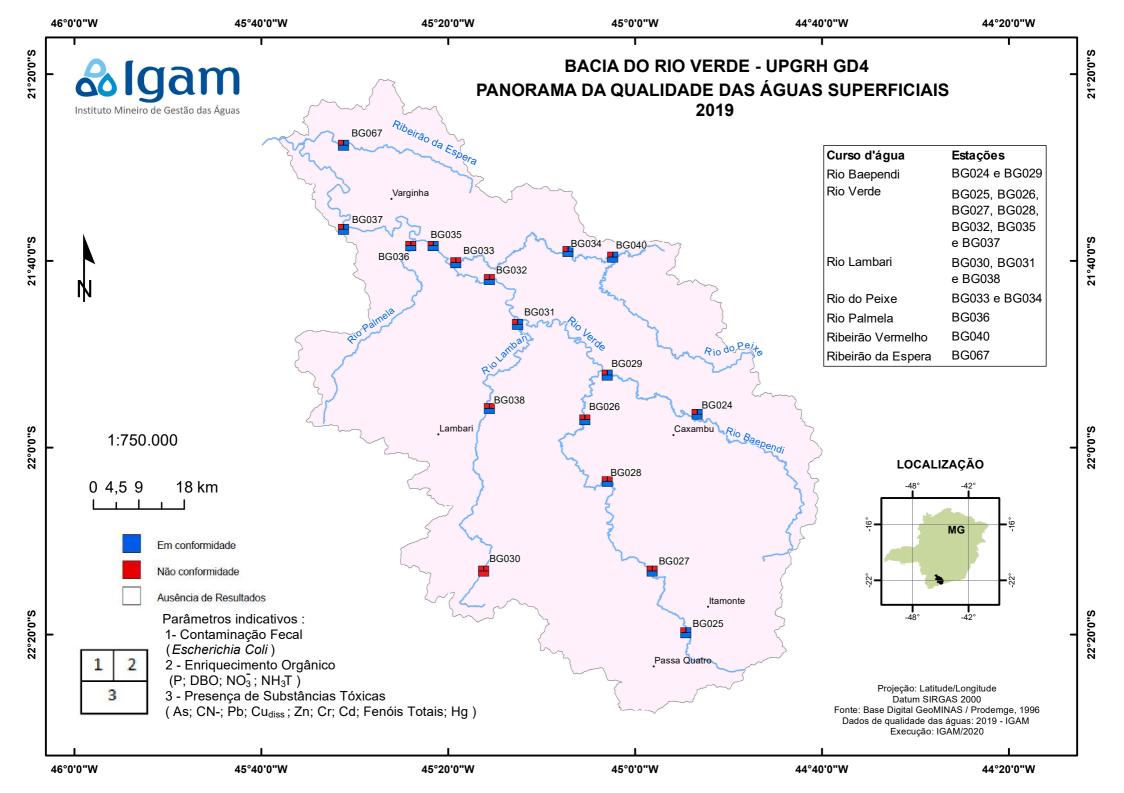


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

						II	NDICAD	ORES				PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL				
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	omparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QA		CT	IE	Т	Indicad	ores 201	.8/2019	Parâmetros indicativos de:		
Tharogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão da Espera	BG067	TRÊS PONTAS	63,5	64,2	BAIXA	BAIXA	52,2	50,9		\odot	\odot	Escherichia coli.		
		Ribeirão Vermelho	BG040	SÃO THOMÉ DAS LETRAS, TRÊS CORAÇÕES	68,2	65,9	MÉDIA	BAIXA	50,3	51,1		(i)		Escherichia coli.		
		Dia Dagmandi	BG024	BAEPENDI	58,6	59,2	BAIXA	BAIXA	50,1	49,8		\odot		Escherichia coli.		
		Rio Baependi	BG029	CONCEIÇÃO DO RIO VERDE	63,1	66,4	BAIXA	BAIXA	53,5	53,2		\odot		Escherichia coli.		
Rio Grande	GD4 - Rio	Rio do Peixe (GD4)	BG033	TRÊS CORAÇÕES	52,7	52,7	BAIXA	BAIXA	53,1	53,9		\odot		Escherichia coli.	Fósforo total.	
No drande	Verde		BG034	TRÊS CORAÇÕES	61,4	67,8	BAIXA	BAIXA	53,5	51,1		\odot	\odot	Escherichia coli.		
			BG030	CRISTINA	51,8	44,5	BAIXA	BAIXA	53,7	56,1		(<u>C</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Cobre dissolvido.
		Rio Lambari (GD4)	BG031	CAMBUQUIRA, TRÊS CORAÇÕES	68,7	69,1	BAIXA	BAIXA	51,7	53		(<u>:</u>)	(3)	Escherichia coli.		
			BG038	CAMBUQUIRA, LAMBARI	60,8	54,3	BAIXA	BAIXA	53,3	53,4		\odot		Escherichia coli.	Fósforo total.	
		Rio Palmela	BG036	TRÊS CORAÇÕES, VARGINHA	64,8	64,2	BAIXA	BAIXA	51,2	50,9		\odot		Escherichia coli.	Fósforo total.	

					II	NDICAD	ORES			PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL							
Bacia	Circunscrição				Re	esultado	os dos in	dicadore	s em 20)19	Co	mparaç	ão	Mapa do Panorama de Qualidade das Águas em 2019			
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA	СТ				Indicadores 2018/2019			Parâmetros indicativos de:			
Thur ogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
			BG025	ITANHANDU	60,9	63,4	BAIXA	BAIXA	49,5	49,6		(1)		Escherichia coli.			
			BG026	CONCEIÇÃO DO RIO VERDE	66,7	60,8	BAIXA	BAIXA	52,9	54,7		(3)		Escherichia coli.	Fósforo total.		
		Rio Verde (GD4)	BG027	POUSO ALTO, SÃO SEBASTIÃO DO RIO VERDE		57,1	BAIXA	BAIXA	53,6	54,2	•••	(i)		Escherichia coli.	Fósforo total.		
Rio Grande	GD4 - Rio Verde		BG028	SOLEDADE DE MINAS	54	49	BAIXA	BAIXA	54	54,7	(3)	(<u>i</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.		
			BG032	TRÊS CORAÇÕES	66,6	66,3	BAIXA	BAIXA	52,4	53,5		(<u>()</u>		Escherichia coli.	Fósforo total.		
			BG035	TRÊS CORAÇÕES	58,5	58,7	BAIXA	BAIXA	53,4	52,5		(<u>()</u>		Escherichia coli.			
			BG037	ELÓI MENDES, VARGINHA	57	58,8	BAIXA	BAIXA	56,3	54,1		\odot		Escherichia coli.			

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade

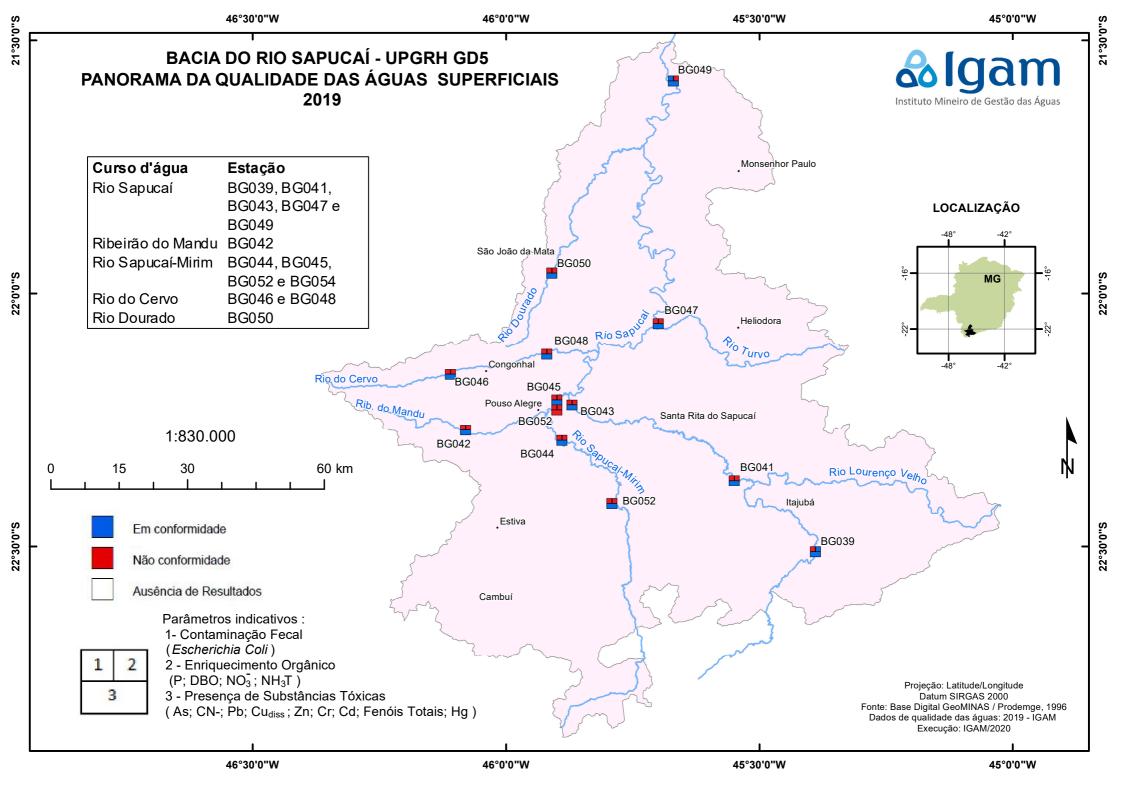


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						_	dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		Т		ores 201			Parâmetros indicativos de:	
···u·· og· u···u	···a··eg·a···ea				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão do Mandu	BG042	BORDA DA MATA	58,8	56,2	BAIXA	BAIXA	54,6	54		\odot		Escherichia coli.	Fósforo total.	
			BG046	CONGONHAL	60,8	55,4	BAIXA	BAIXA	53,6	55,1		(<u>C</u>)		Escherichia coli.	Fósforo total.	
		Rio do Cervo	BG048	ESPÍRITO SANTO DO DOURADO, POUSO ALEGRE	58,5	54,4	BAIXA	BAIXA	52,2	54,5	•••	\odot	•••	Escherichia coli.	Fósforo total.	
		Rio Dourado (GD5)	BG050	SÃO JOÃO DA MATA	62,4	57,6	MÉDIA	BAIXA	51,4	52,4		(<u>i</u>)	(3)	Escherichia coli.	Fósforo total.	
			BG039	ITAJUBÁ, WENCESLAU BRAZ	65,8	67,1	BAIXA	BAIXA	51,6	51,7		(3)		Escherichia coli.		
Dia Canada	GD5 - Rio		BG041	PIRANGUINHO, SÃO JOSÉ DO ALEGRE	50,4	51,3	BAIXA	BAIXA	54,9	55,4		\odot		Escherichia coli.	Fósforo total.	
Rio Grande	Sapucaí	Rio Sapucaí	BG043	POUSO ALEGRE, SÃO SEBASTIÃO DA BELA VISTA	55,2	54,9	BAIXA	BAIXA	51,8	54		③	(3)	Escherichia coli.	Fósforo total.	
			BG047	CAREAÇU, SILVIANÓPOLIS	57,7	58,8	BAIXA	BAIXA	55,1	53,6		\odot		Escherichia coli.	Fósforo total.	
			BG049	PARAGUAÇU	65,8	69,3	BAIXA	BAIXA	52,1	54,4	•••	(<u>:</u>)	•••		Fósforo total.	
			BG044	POUSO ALEGRE	58,2	62,6	BAIXA	BAIXA	54,2	52,4		\odot		Escherichia coli.	Fósforo total.	
		Rio Sapucaí-Mirim	BG045	POUSO ALEGRE	50,2	53,2	BAIXA	BAIXA	55,7	55,2		\odot		Escherichia coli.	Fósforo total.	
		NIO Sapucai-iviirim	BG052	POUSO ALEGRE	52,8	48,4	BAIXA	BAIXA	53	54,6		(:)	•••	Escherichia coli.	Fósforo total.	Cobre dissolvido.
			BG054	CONCEIÇÃO DOS OUROS	55,9	57	BAIXA	BAIXA	54,4	53,2		\odot		Escherichia coli.	Fósforo total.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

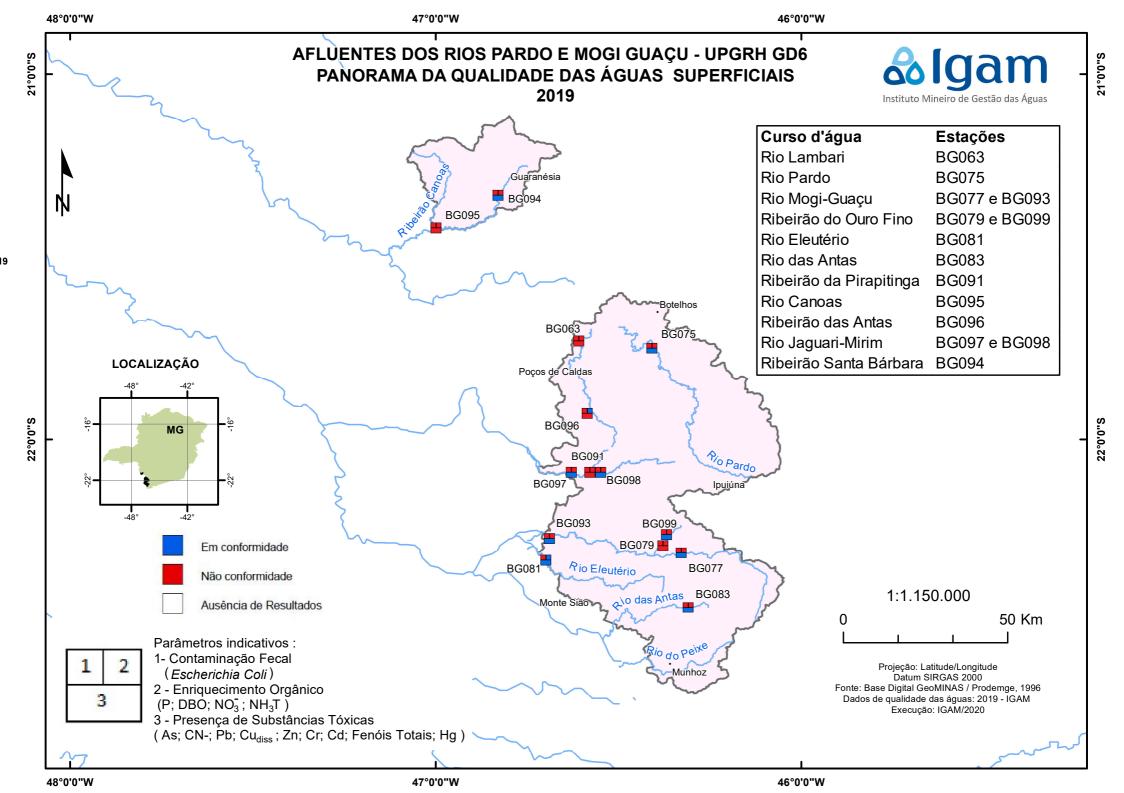


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES	_			PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore				omparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		СТ		T		lores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Lambari (GD4)	BG031	CAMBUQUIRA, TRÊS CORAÇÕES	68,7	69,1	BAIXA	BAIXA	51,7	53		\odot		Escherichia coli.		
		Ribeirão das Antas	BG096	POÇOS DE CALDAS	69,6	70,2	BAIXA	ALTA	50,2	50	\odot			Escherichia coli.		Chumbo total.
		Ribeirão do Ouro	BG079	OURO FINO	35,8	41	ALTA	MÉDIA	59	60,1		(<u>:</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total	Cianeto Livre.
		Fino	BG099	OURO FINO	62,1	59,8	BAIXA	BAIXA	50,4	51,1		(i)		Escherichia coli.	Demanda Bioquímica de Oxigênio.	
		Ribeirão Santa Bárbara	BG094	GUARANÉSIA	51,2	53,2	BAIXA	BAIXA	56,5	56		\odot		Escherichia coli.	Fósforo total.	
		Rio Canoas	BG095	ARCEBURGO	62	63,5	BAIXA	ALTA	53,9	52,1				Escherichia coli.	Fósforo total.	Chumbo total.
Rio Grande	GD4 - Rio	Rio das Antas	BG083	BUENO BRANDÃO	55,5	56,3	MÉDIA	BAIXA	52,6	52,4		\odot	•••	Escherichia coli.	Fósforo total.	
nio Grande	Verde	Rio Eleutério	BG081	ESPÍRITO SANTO DO PINHAL (SP), IACUTINGA	61,9	60,6	BAIXA	BAIXA	54,5	55		\odot		Escherichia coli.		
		Rio Jaguari-Mirim	BG097	ANDRADAS	47,7	42,8	MÉDIA	BAIXA	55,8	56,6		\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total	
		THE SEGULT WITH	BG098	ANDRADAS	62,9	51,9	BAIXA	BAIXA	51,9	58,7		\odot		Escherichia coli.	Fósforo total.	
		Rio Lambari (GD6)	BG063	POÇOS DE CALDAS	44,7	42,7	BAIXA	BAIXA	60,3	63,3		\odot	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.
		Rio Mogi-Guaçu	BG077	INCONFIDENTES	50,8	52,7	ALTA	BAIXA	55,2	53,4		(i)		Escherichia coli.	Fósforo total.	
		Nio iviogi-audçu	BG093	ESPÍRITO SANTO DO PINHAL (SP)	58,8	58	BAIXA	BAIXA	53	53,1		\odot	•••	Escherichia coli.	Fósforo total.	
		Rio Pardo (GD6)	BG075	BANDEIRA DO SUL, POÇOS DE CALDAS	63	62,2	BAIXA	BAIXA	52,1	53,3	•••	\odot	•••	Escherichia coli.	Fósforo total.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

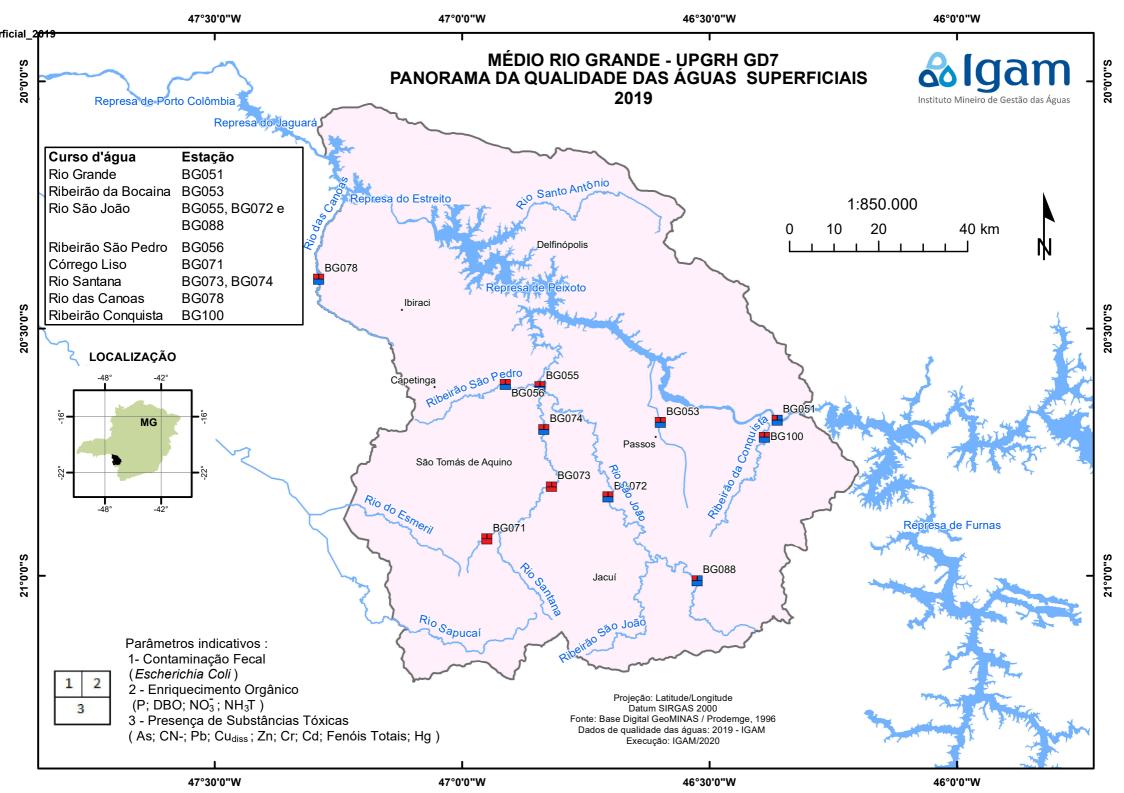


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	omparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QΑ	(CT	IE	T	Indicad	ores 201	.8/2019		Parâmetros indicativos de:	
Hidiografica	Hidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Lambari (GD4)	BG031	CAMBUQUIRA, TRÊS CORAÇÕES	68,7	69,1	BAIXA	BAIXA	51,7	53		\odot	(3)	Escherichia coli.		
		Ribeirão Conquista	BG100	PASSOS	60	55,3	BAIXA	BAIXA	53,4	55,2		(3)		Escherichia coli.	Fósforo total.	
		Ribeirão da Bocaina	BG053	PASSOS	40,4	43,7	MÉDIA	MÉDIA	60,8	61				Escherichia coli.	Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão São Pedro (GD7)	BG056	CÁSSIA	64,9	61,6	BAIXA	BAIXA	51,1	53		\odot		Escherichia coli.	Fósforo total.	
		Rio das Canoas	BG078	CLARAVAL	54,4	53,4	BAIXA	BAIXA	53,7	53,8		\odot		Escherichia coli.	Fósforo total.	
Rio Grande	GD4 - Rio Verde	Rio Santana (GD7)	BG073	FORTALEZA DE MINAS, PRATÁPOLIS	58	57,3	BAIXA	MÉDIA	53,9	54,8		(3)		Escherichia coli.	Fósforo total.	Chumbo total, Cromo total.
		, ,	BG074	PRATÁPOLIS	52,4	54,3	BAIXA	BAIXA	53,6	55,8		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio São João	BG055	CÁSSIA	55,6	53,8	BAIXA	BAIXA	52,9	55,5		(3)		Escherichia coli.	Fósforo total.	
		(GD7)	BG088	BOM JESUS DA PENHA	55,1	53,5	BAIXA	BAIXA	50,7	53		(<u>:</u>)	(3)	Escherichia coli.		
		Rio Grande	BG051	ALPINÓPOLIS, SÃO JOÃO BATISTA DO GLÓRIA		71,8	BAIXA	BAIXA	49,8	50,5	•••	\odot	•••	Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

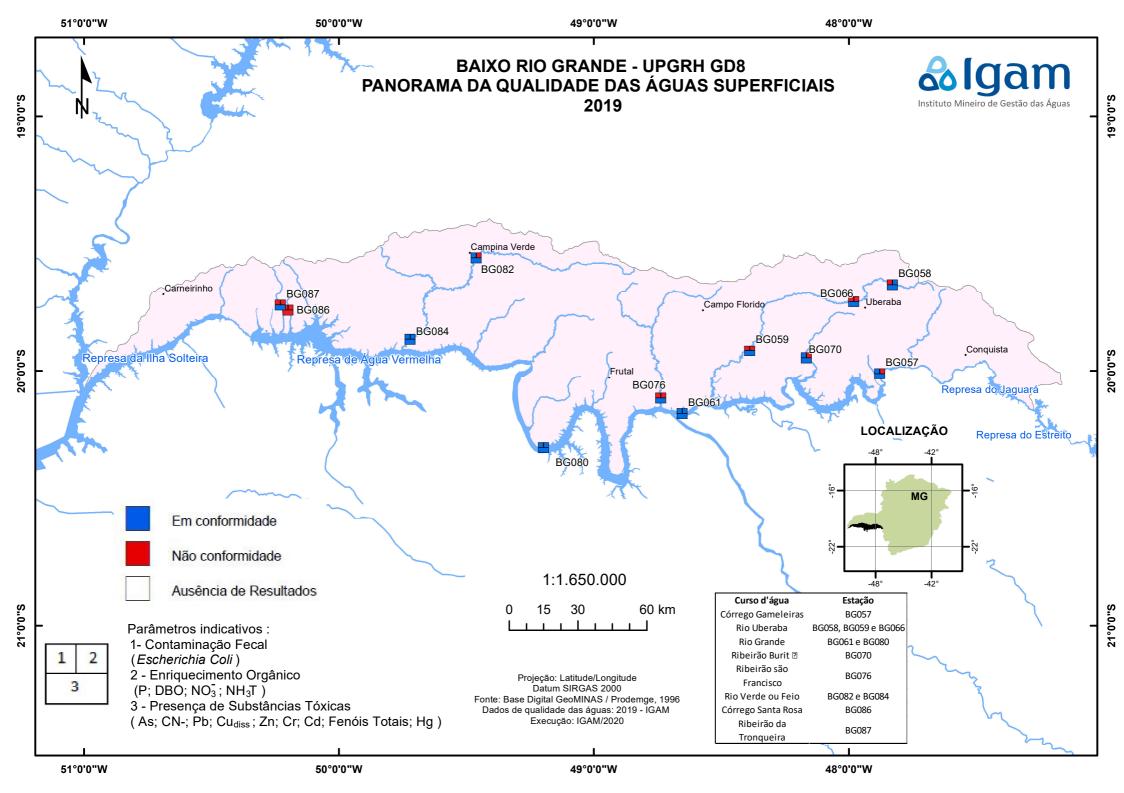


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

									NDICAD					PARÂMETRO	OS QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição							dicadore				omparaçã		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		CT		ET		ores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego Gameleiras	BG057	UBERABA	45,4	48,2	BAIXA	BAIXA	58,1	57,1	•••	\odot	•••		Fósforo total.	
		Córrego Santa Rosa	BG086	ITURAMA	39,8	40,6	ALTA	ALTA	78,4	73,7		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre.
		Ribeirão Buriti	BG070	ÁGUA COMPRIDA, CONCEIÇÃO DAS ALAGOAS		68,8	BAIXA	BAIXA	50,4	51,2	(3)	(3)			Fósforo total.	
		Ribeirão da Tronqueira	BG087	ITURAMA	57,4	60	BAIXA	MÉDIA	62,9	62,1		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
Rio Grande	GD8 - Afluentes	Ribeirão São Francisco	BG076	FRUTAL, PLANURA	71,7	65,5	BAIXA	BAIXA	49,4	53	\odot	(<u>:</u>)	(3)	Escherichia coli.	Fósforo total.	
No Grande	Mineiros do Baixo Grande		BG058	UBERABA	65,2	69,3	BAIXA	BAIXA	53,5	52,6		\odot		Escherichia coli.		
		Rio Uberaba	BG059	CONCEIÇÃO DAS ALAGOAS	53,8	52,1	BAIXA	BAIXA	53,7	56,7		(<u>C</u>)	<u>••</u>	Escherichia coli.	Fósforo total.	
			BG066	UBERABA	51,1	51,4	BAIXA	BAIXA	52,6	55,8	<u>••</u>	(<u>C</u>)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Die Vorde en Feie	BG082	CAMPINA VERDE	66,9	66	BAIXA	BAIXA	53,2	55,7		(<u>C</u>)	•••		Fósforo total.	
		Rio Verde ou Feio	BG084	SÃO FRANCISCO DE SALES	79,8	71	BAIXA	BAIXA	57,3	51,7	<u>••</u>	(3)	(:)			
		Rio Grande	BG061	COLÔMBIA (SP), PLANURA	85,1	84,6	BAIXA	BAIXA	49,8	49,9		\odot				
		NIO GLATIGE	BG080	FRONTEIRA	77,1	75,6	BAIXA	BAIXA	53,8	52,2		(<u>C</u>)				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

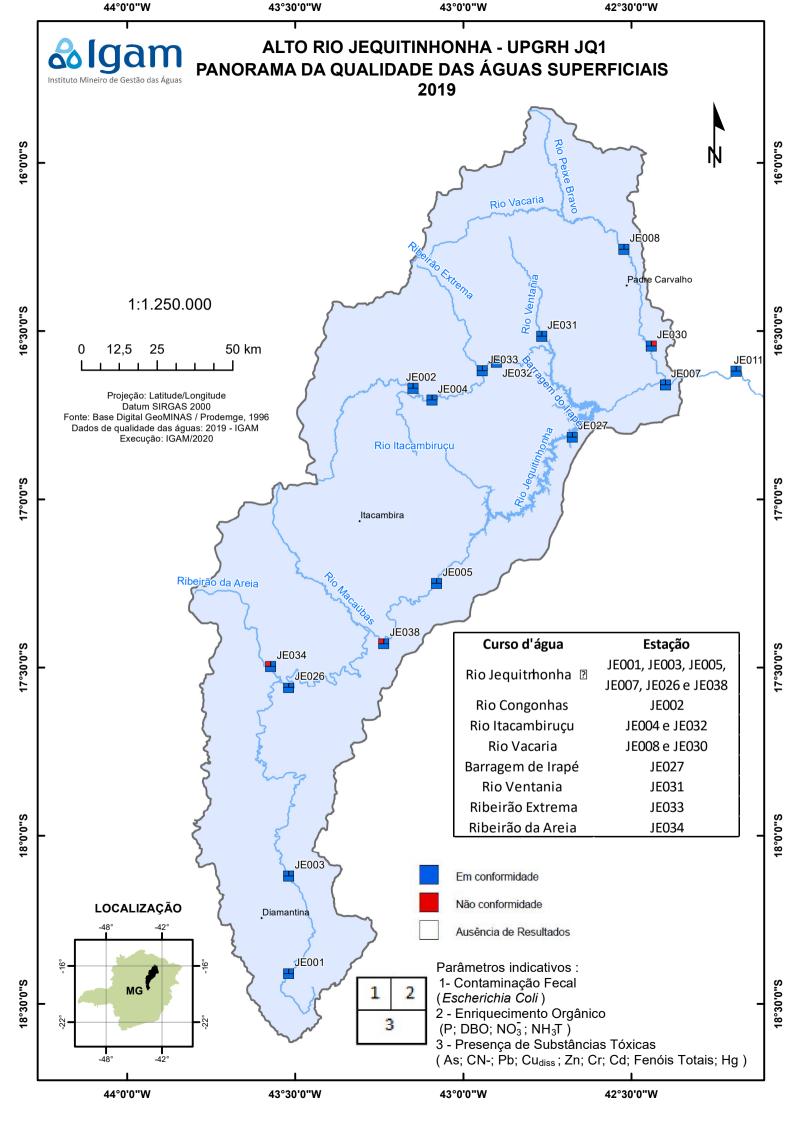


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

							IN	IDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Circunscricão										Co	mparaç	ão	Mapa do Pa	· · · · · · · · · · · · · · · · · · ·	ias em 2019
_	Corpo de água	Estação	Municípios	10	•			- 11	ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Hidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
	Barragem de Irapé	JE027	JOSÉ GONÇALVES DE MINAS	82	81,1	BAIXA	BAIXA	52,3	54,5		\odot				
	Ribeirão da Areia	JE034	OLHOS-D'ÁGUA	*	63,2	*	BAIXA	*	49,1	×	×	×	Escherichia coli.		
	Ribeirão Extrema	JE033	GRÃO MOGOL	*	72,8	*	BAIXA	*	51,2	×	×	×			
	Rio Congonhas	JE002	GRÃO MOGOL	70,7	73,5	BAIXA	BAIXA	50,7	51,9		\odot	•••			
	Pio Itacambirucu	JE004	GRÃO MOGOL	67,3	76,1	BAIXA	BAIXA	52,2	53,6	\odot	(<u>i</u>)				
	Nio Itacambii uçu	JE032	CRISTÁLIA, GRÃO MOGOL	*	78,4	*	BAIXA	*	51,6	×	×	×			
	Pio Vacaria	JE008	PADRE CARVALHO	76	80,7	BAIXA	BAIXA	52,5	48,8		(3)	(3)			
JQ1 - Alto Jequitinhonha	NIO Vacaria	JE030	JOSENÓPOLIS	*	71,3	*	BAIXA	*	50,1	×	×	×		Fósforo total.	
	Rio Ventania	JE031	GRÃO MOGOL	*	74,6	*	BAIXA	*	49,1	×	×	×			
		JE001	DIAMANTINA, SERRO	79,2	83	BAIXA	BAIXA	49,7	49,4		(<u>i</u>)				
		JE003	DIAMANTINA	74,4	74,5	BAIXA	BAIXA	51,2	54,5		(3)	(3)			
Rio	Pio loquitinhonha	JE026	DIAMANTINA, OLHOS-D'ÁGUA	61,7	70,8	BAIXA	BAIXA	56,4	52,2	(;)	(3)				
	nio Jequiliiiiolilla	JE038	BOCAIÚVA, DIAMANTINA	*	68,1	*	BAIXA	*	52,7	×	×	×	Escherichia coli.		
		JE005	BOCAIÚVA, CARBONITA,	78,8	79	BAIXA	BAIXA	51,2	49,8		\odot				
		JE007	BERILO, VIRGEM DA LAPA	74,8	72,6	BAIXA	BAIXA	49,1	48,8		(<u>i</u>)				
		Hidrográfica Barragem de Irapé Ribeirão da Areia Ribeirão Extrema Rio Congonhas Rio Itacambiruçu JQ1 - Alto Jequitinhonha Rio Ventania	Hidrográfica Barragem de Irapé Ribeirão da Areia Ribeirão Extrema Rio Congonhas Rio Congonhas JE002 Rio Itacambiruçu JE032 Rio Vacaria JE030 Rio Ventania JE031 JE001 JE003 Rio Jequitinhonha JE033 JE005	Hidrográfica Barragem de Irapé Ribeirão da Areia Ribeirão Extrema Rio Congonhas Bio Vacaria Rio Ventania Rio Jequitinhonha Rio Ventania Rio Jequitinhonha Rio Ventania Rio Vent	Circunscrição Hidrográfica Corpo de água Estação Municípios Identificación Barragem de Irapé JE027 JOSÉ GONÇALVES DE MINAS 82 Ribeirão da Areia JE034 OLHOS-D'ÁGUA * Ribeirão Extrema JE033 GRÃO MOGOL * Rio Congonhas JE002 GRÃO MOGOL 67,3 JE032 CRISTÁLIA, GRÃO MOGOL * JE032 PADRE CARVALHO * JE030 JOSENÓPOLIS * Rio Ventania JE031 GRÃO MOGOL * JE001 DIAMANTINA, SERRO 79,2 JE003 DIAMANTINA, SERRO 74,4 JE038 DIAMANTINA, OLHOS-D'ÁGUA 61,7 JE038 BOCAIÚVA, DIAMANTINA * JE005 CARBONITA,	Circunscrição Hidrográfica Corpo de água Estação Municípios IQA 2018 2019 2018 2	Corpo de água Estação Municípios IQA 2018 2019 2018	Circunscrição Hidrográfica Corpo de água Estação Municípios Resultados dos indicadore IQA (2018) 2019 (2018	Circunscrição Hidrográfica Corpo de água Estação Municípios Resultados dos indicadores maior do la composição de la co	Hidrográfica Corpo de agua Estação Municípios 2018 2019 2019 2019 2019 2019 2019 2019 20	Circunscrição Hidrográfica Corpo de água Estação Municípios IQA CT 2018 2019 2018 2019 2018 2019 2018 2019 IQA IQA IRIT 2018 2019 IRIT 2018 IRIT 2018	Corpo de água Estação Municípios Municípios Municípios Corpo de água Estação Municípios Corpo de água Barragem de Irapé JEO27 JOSÉ GONÇALVES DE MINAS Ribeirão da Areia JEO34 OLHOS-D'ÁGUA * 63,2 * 8AIXA 52,3 54,5 *	Corpo de água Estação Municípios Corpo de água Estação Municípios Corpo de água Estação Municípios Corpo de água Cr IET Inniciadores 2018/2019 2018 2018 2019 2018 2018 2019 2018 2018 2018 2018 2019 2018 2018 2019 2018 2018 2019 2018 2018 2018 2018 2019	Corpo de água Estação Municípios Corpo de água Estação Municípios Cardo CT CT CT CT CT CT CT C	Circunscrição Hidrográfica Corpo de água Estação Municípios Municípios Circunscrição Circunscrição Corpo de água Estação Municípios Circunscrição Contaminação Fecal Enriquecimento orgânico Contaminação Fecal Enriquecimento orgânico Circunscrição Cir

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[😮] O indicador piorou ou manteve-se na pior condição de qualidade

[🗶] Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

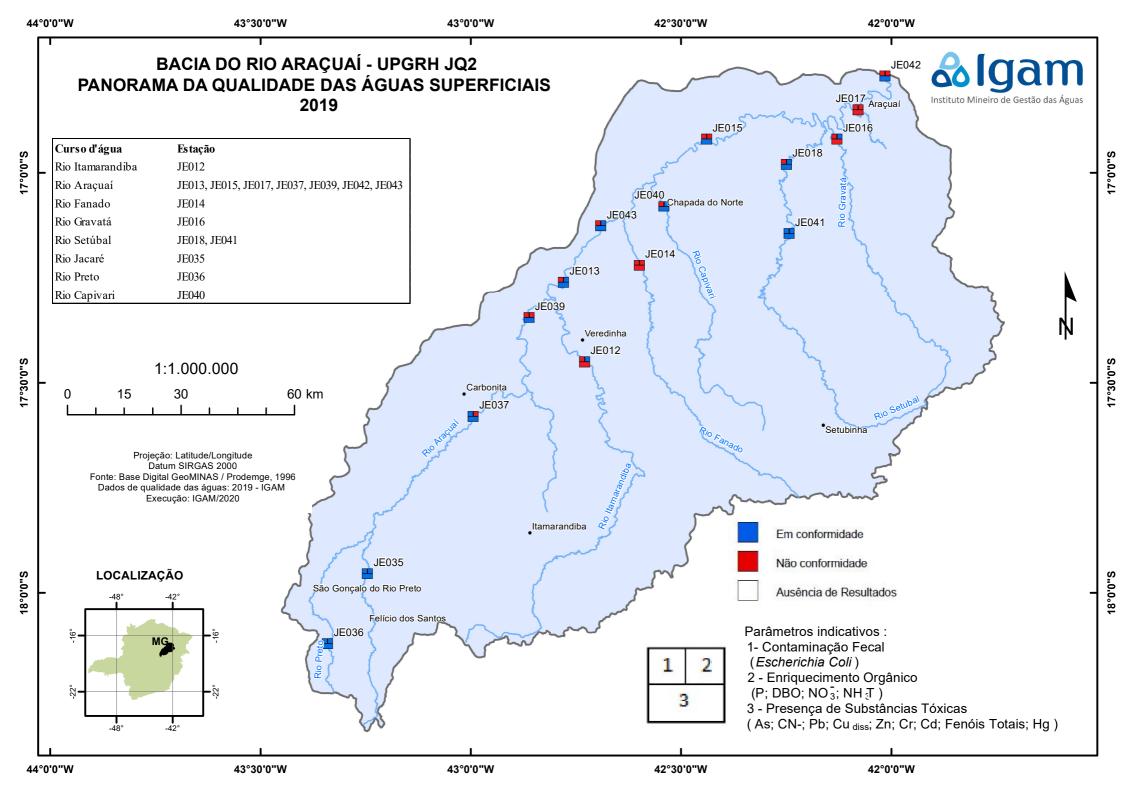


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

									IDICAD					PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						_	dicadore				omparaçã		Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		ET	Indicad	ores 201			Parâmetros indicativos de:	
Thurogranica	Thurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Capivari	JE040	CHAPADA DO NORTE	*	47,8	*	BAIXA	*	56,3	×	×	×	Escherichia coli.		
		Rio Fanado	JE014	MINAS NOVAS	61,2	60,1	BAIXA	ALTA	55,1	56,4		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Cobre dissolvido.
		Rio Gravatá	JE016	ARAÇUAÍ	71,7	60,3	BAIXA	MÉDIA	50,2	55,5	(3)	(3)	(3)	Escherichia coli.		Cobre dissolvido, Zinco total.
		Rio Itamarandiba	JE012	VEREDINHA	76,9	69,6	BAIXA	MÉDIA	49,6	51,7				Escherichia coli.		Cobre dissolvido.
		Rio Preto (JQ2)	JE036	SÃO GONÇALO DO RIO PRETO	*	65,1	*	BAIXA	*	49,1	×	×	×			
		Rio Setúbal	JE041	JENIPAPO DE MINAS	*	62,8	*	BAIXA	*	50,8	×	×	×			
		NIO Setubai	JE018	ARAÇUAÍ, FRANCISCO	53,2	49,8	BAIXA	BAIXA	51,1	51,4	(3)	(3)		Escherichia coli.		
Rio Jequitinhonha	JQ2 - Rio Araçuaí		JE035	SENADOR MODESTINO	*	67,8	*	BAIXA	*	49,4	×	×	×			
			JE037	CARBONITA	*	62,6	*	BAIXA	*	51,5	×	×	×		Demanda Bioquímica de Oxigênio.	
			JE013	TURMALINA	78,5	70,1	BAIXA	BAIXA	51,6	51,1		\odot		Escherichia coli.		
		Rio Aracuaí	JE039	TURMALINA	*	68,8	*	BAIXA	*	50,5	×	×	×	Escherichia coli.	Fósforo total.	
		No Araçuai	JE043	LEME DO PRADO	*	66,1	*	BAIXA	*	51,6	×	×	×	Escherichia coli.		
			JE015	BERILO	72	64,2	BAIXA	BAIXA	52,5	56,7	(3)	(<u>(;</u>		Escherichia coli.	Fósforo total.	
			JE017	ARAÇUAÍ	61,1	57,6	BAIXA	ALTA	53,6	54,6		(3)		Escherichia coli.	Fósforo total.	Chumbo total, Zinco total.
			JE042	ARAÇUAÍ	*	54,8	*	BAIXA	*	54,8	×	×	×	Escherichia coli.	Fósforo total.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

[🗶] Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

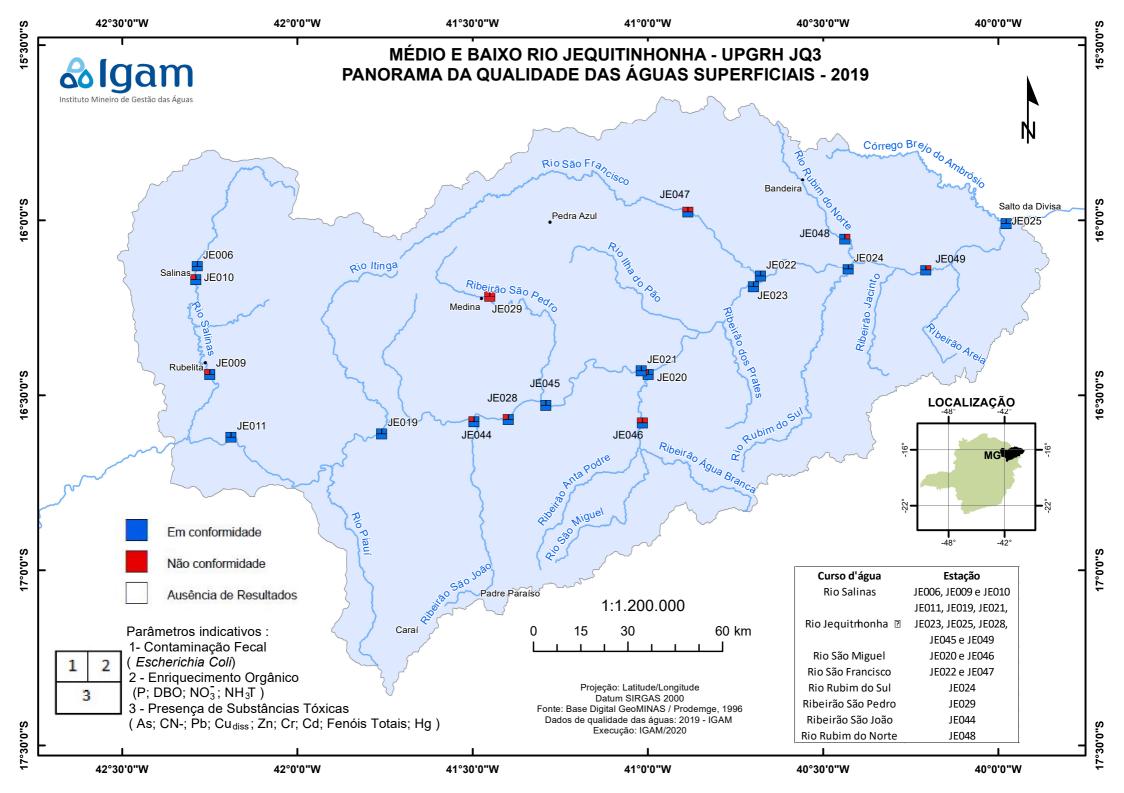


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	IDICAD	ORES				PARÂMETRO	IS QUE NÃO ATENDERAM O L	IMITE LEGAL
Bacia	Circunscrição				Re	sultado	s dos in	dicadore	s em 20	019	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Ág	uas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QΑ	C	T	Ш	ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Thurogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão São João (JQ3)	JE044	ITAOBIM	*	63,4	*	BAIXA	*	50,7	×	×	×	Escherichia coli.		
		Ribeirão São Pedro (JQ3)	JE029	MEDINA	15,7	26,9	ALTA	ALTA	71,9	71,9	\odot	(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre, Fenóis totais.
		Rio Rubim do Norte	JE048	ALMENARA, JACINTO	*	75,5	*	BAIXA	*	51	×	×	×		Fósforo total.	
		Rio Rubim do Sul	JE024	JACINTO	77,1	75,1	BAIXA	BAIXA	54,8	56,7		③				
Rio	JQ3 - Médio /		JE006	SALINAS	65,1	70,7	BAIXA	BAIXA	57,7	51,6	\odot	(<u>i</u>)	\odot			
Jequitinhonha	Baixo Rio Jequitinhonha	Rio Salinas	JE010	SALINAS	53,1	60,2	BAIXA	BAIXA	57,1	51,7		\odot	\odot	Escherichia coli.		
			JE009	RUBELITA	69	62	BAIXA	BAIXA	57,6	54,3	•••	\odot		Escherichia coli.		
		Rio São Francisco	JE047	ALMENARA	*	71,8	*	BAIXA	*	59,5	×	×	×	Escherichia coli.	Fósforo total.	
		(JQ3)	JE022	ALMENARA	64,5	68,1	BAIXA	BAIXA	52,3	51,8		(3)	(<u>:</u>)			
		Rio São Miguel	JE046	JOAÍMA	*	63,1	*	BAIXA	*	51,9	×	×	×	Escherichia coli.	Fósforo total.	
		(JQ3)	JE020	JEQUITINHONHA	71,7	71,2	BAIXA	BAIXA	52,2	50,9		(<u>:</u>)	(i)	Escherichia coli.		

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição							dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		Т	Indicad	ores 201			Parâmetros indicativos de:	
······································					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			JE011	CORONEL MURTA	71,6	70	ALTA	BAIXA	50	48,8		(<u>:</u>)				
			JE019	ITINGA	70	71,4	BAIXA	BAIXA	49,3	50		③				
			JE028	JEQUITINHONHA	65,5	66,6	BAIXA	BAIXA	52,9	52,7		③		Escherichia coli.		
Rio	JQ3 - Médio / Baixo Rio	Die leevitinkenhe	JE045	JEQUITINHONHA	*	69,4	*	BAIXA	*	50,4	×	×	×			
Jequitinhonha	Jequitinhonha	Rio Jequitinhonha	JE023	ALMENARA	72,2	70,6	BAIXA	BAIXA	52,1	50,8		(<u>()</u>	\odot			
			JE021	JEQUITINHONHA	70,3	72,5	BAIXA	BAIXA	51,8	51,5		(<u>i</u>)				
			JE049	JACINTO	*	69,5	*	BAIXA	*	53	×	×	×		Fósforo total.	
			JE025	SALTO DA DIVISA	72,6	72	BAIXA	BAIXA	54,4	56,3		(<u>i</u>)				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

🔞 O indicador piorou ou manteve-se na pior condição de qualidade

🗶 Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

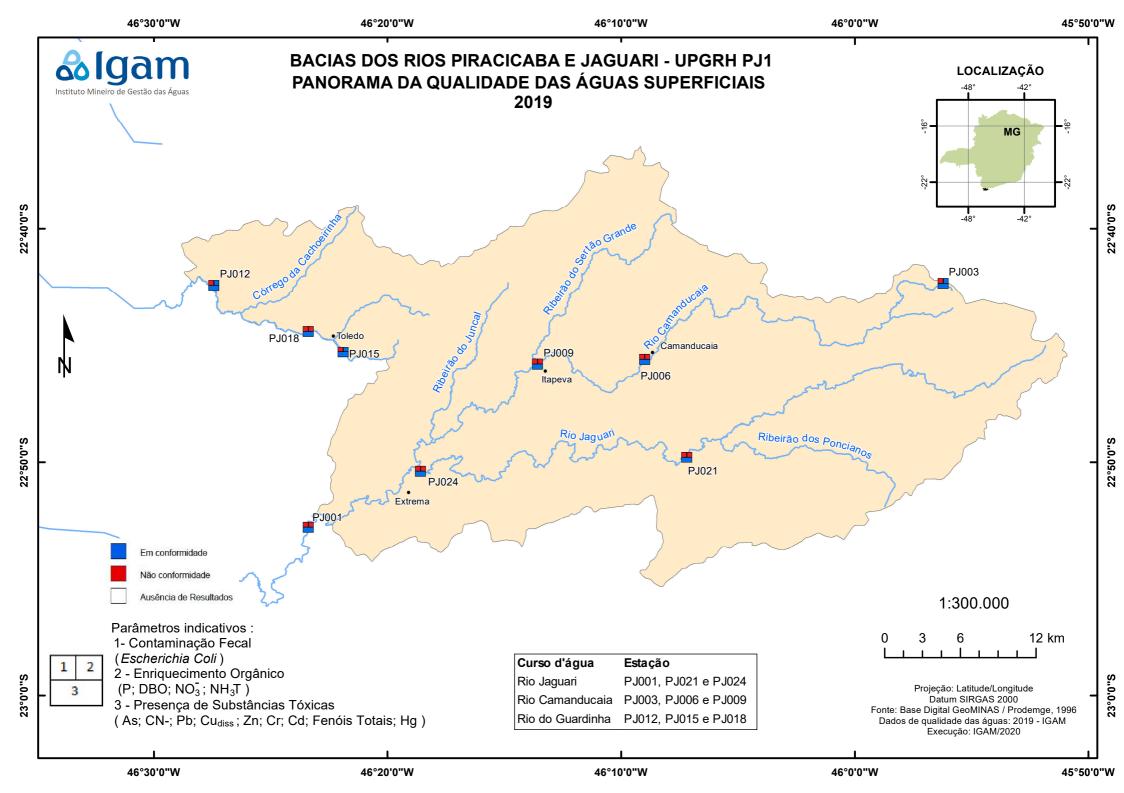


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore		_	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QΑ		CT	IE	Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			PJ003	CAMANDUCAIA	80,4	80,8	BAIXA	BAIXA	49,1	49,9		\odot		Escherichia coli.		
		Rio Camanducaia	PJ006	CAMANDUCAIA	49,8	49,4	BAIXA	BAIXA	52,7	54,5		(Escherichia coli.	Fósforo total.	
			PJ009	ITAPEVA	54,8	55,7	BAIXA	BAIXA	52,9	53,9		(Escherichia coli.	Fósforo total.	
	214		PJ012	TOLEDO	56,9	64,3	BAIXA	BAIXA	55,6	51,4		(1)	\odot	Escherichia coli.		
Rio Piracicaba	PJ1 - Piracicaba / Jaguari	Rio do Guardinha	PJ015	TOLEDO	62	64,3	BAIXA	BAIXA	52,2	51,2		\odot	\odot	Escherichia coli.		
			PJ018	TOLEDO	51,3	54,2	BAIXA	BAIXA	55,4	53,5		\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio.	
			PJ001	EXTREMA	50,5	57,1	BAIXA	BAIXA	53,3	53,5		\odot		Escherichia coli.	Fósforo total.	
		Rio Jaguari	PJ021	CAMANDUCAIA	69,3	63,9	BAIXA	BAIXA	52,4	54,5		\odot		Escherichia coli.	Fósforo total.	
			PJ024	EXTREMA	67,6	67,2	BAIXA	BAIXA	51,9	52,3		\odot		Escherichia coli.	Fósforo total.	

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

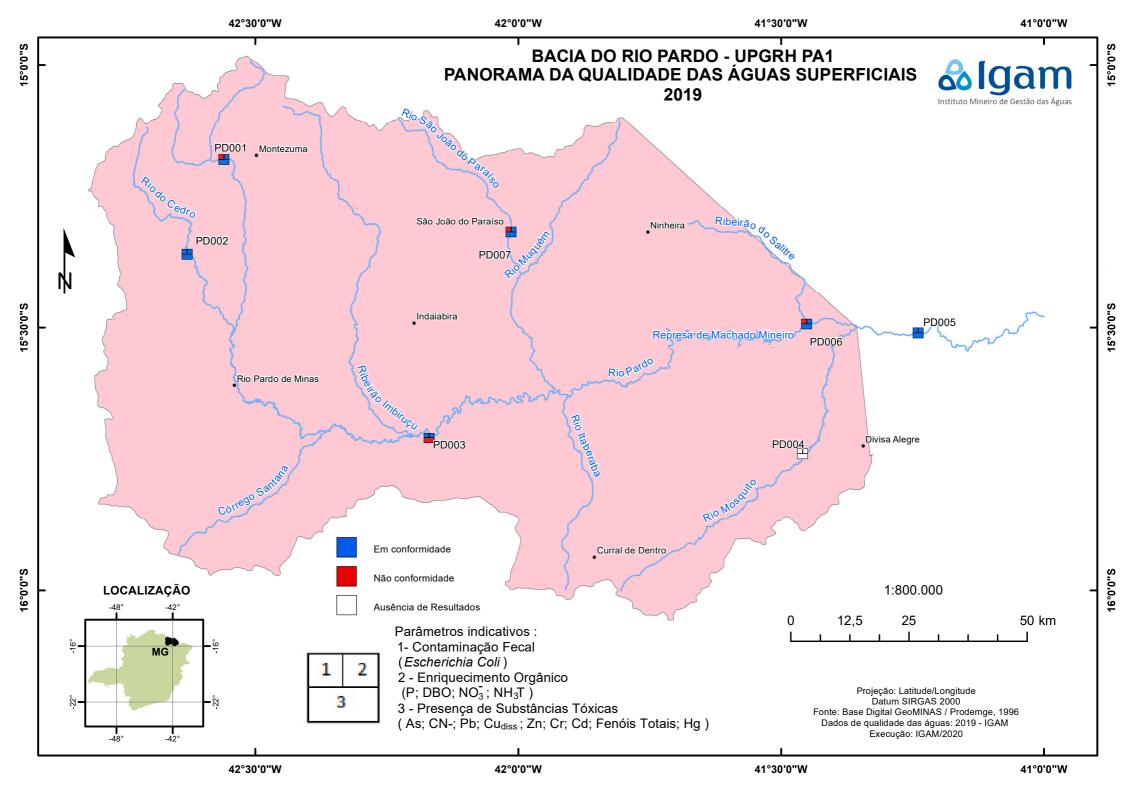


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore		_	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	•	CT		Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Thurogranica	riidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio do Cedro	PD002	SANTO ANTÔNIO DO RETIRO	61	59,9	BAIXA	BAIXA	58,8	54,1		(<u>3</u>)				
		Rio Pardo (PA1)	PD006	NINHEIRA	67,8	70,8	BAIXA	BAIXA	59,2	53,7	\odot	(1)	\odot	Escherichia coli.		
		Rio Itapecerica	PA007	DIVINÓPOLIS	50,7	49,6	BAIXA	BAIXA	56	56,4		(1)		Escherichia coli.	Fósforo total.	
Rio Pardo	PA1 - Rio Mosquito	Rio Mosquito (PA1)	PD004	ÁGUAS VERMELHAS	21,8	*	BAIXA	*	75,9	*	×	×	×	*	*	*
	·		PD001	MONTEZUMA	67,2	62,1	BAIXA	BAIXA	53,6	52,7		(<u>:</u>)		Escherichia coli.		
		Rio Pardo (PA1)	PD003	INDAIABIRA	75,4	71,2	BAIXA	BAIXA	54,5	54,4		(i)				Zinco total.
			PD005	CÂNDIDO SALES (BA), ENCRUZILHADA (BA)	51,1	63,1	BAIXA	BAIXA	56,3	55,7		\odot				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

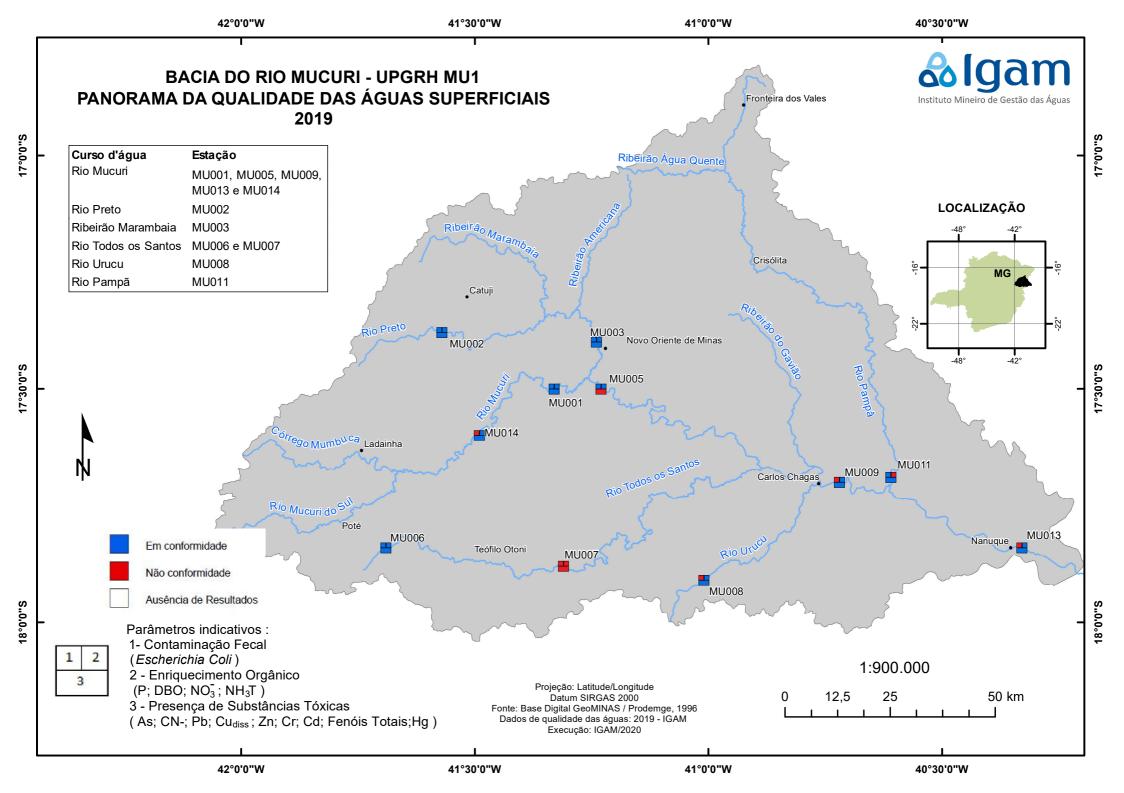


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

									IDICAD						S QUE NÃO ATENDERAM O L	
								dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	uas em 2019
Bacia	Circunscrição	Corpo de água	Estação	Municípios	IC	QA .	C	T	- 18	Т	Indicad	ores 201	.8/2019		Parâmetros indicativos de:	
Hidrográfica	Hidrográfica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Marambaia	MU003	NOVO ORIENTE DE MINAS, TEÓFILO OTONI	70,9	71,9	BAIXA	BAIXA	51	51	<u>••</u>	\odot				
			MU001	TEÓFILO OTONI	68,4	77	BAIXA	BAIXA	54,5	49,9	\odot	\odot	\odot			
			MU005	PAVÃO, TEÓFILO OTONI	71,3	73,3	ALTA	MÉDIA	53,6	50,6		(3)	\odot			Zinco total.
		Rio Mucuri	MU009	CARLOS CHAGAS	64,9	66,2	BAIXA	BAIXA	51,7	51,7		(3)		Escherichia coli.		
			MU013	NANUQUE	61,4	67,2	BAIXA	BAIXA	53,2	54,1	•••	\odot		Escherichia coli.		
Rio Mucuri	MU1 - Rio Mucuri		MU014	TEÓFILO OTONI	59	59,8	BAIXA	BAIXA	54,4	50,2		(1)	(3)	Escherichia coli.		
		Rio Pampã	MU011	CARLOS CHAGAS, NANUQUE	71,5	77,2	BAIXA	BAIXA	51,8	52,7		\odot	(3)		Fósforo total.	
		Rio Preto (MU1)	MU002	CATUJI	69	69,3	BAIXA	BAIXA	50,7	50,7		(<u>C</u>)				
			MU006	POTÉ	56,7	53	ALTA	BAIXA	50,9	52,2	\odot	(C)	(3)			
		Rio Todos os Santos	MU007	TEÓFILO OTONI	40,9	40,8	ALTA	ALTA	61,2	60,2	•••	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre.
		Rio Urucu	MU008	CARLOS CHAGAS	56,2	62,7	BAIXA	BAIXA	53,9	53,5		(3)		Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[😮] O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

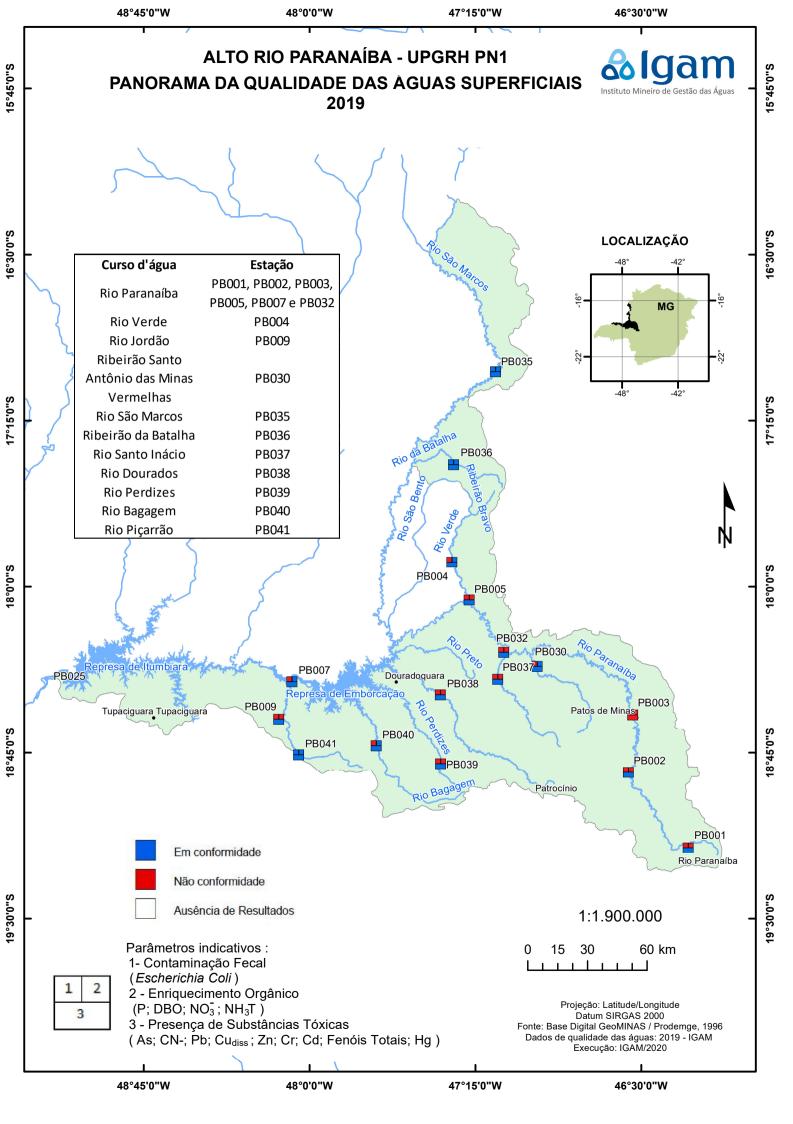


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore		_	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		CT		Т	Indicad	lores 201	8/2019		Parâmetros indicativos de:	
Thurogranica	Thurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão da Batalha	PB036	PARACATU	74	75,5	BAIXA	BAIXA	48,8	48,8		\odot				
		Ribeirão Santo Antônio das Minas Vermelhas	PB030	PATOS DE MINAS	64,4	67,7	BAIXA	BAIXA	52,2	48,8		\odot		Escherichia coli.		
		Rio Bagagem	PB040	ESTRELA DO SUL	54,1	58,4	ALTA	BAIXA	53,1	50		(3)	\odot	Escherichia coli.		
Rio Paranaíba	PN1 - Alto Rio Paranaíba	Rio Dourados	PB038	ABADIA DOS DOURADOS	55,4	56,9	BAIXA	BAIXA	52,6	51,2		\odot	\odot	Escherichia coli.	Fósforo total.	
		Rio Jordão	PB009	ARAGUARI	59,3	52	MÉDIA	MÉDIA	57	55,6				Escherichia coli.	Fósforo total, Nitrogênio amoniacal total.	
		Rio Perdizes	PB039	MONTE CARMELO	44,8	51,9	ALTA	BAIXA	55,6	53,6	\odot	\odot	•••	Escherichia coli.	Fósforo total, Nitrogênio amoniacal total.	
		Rio Piçarrão	PB041	ARAGUARI	69,4	68,7	BAIXA	BAIXA	48,8	49,1		\odot	•••			
		Rio Santo Inácio	PB037	COROMANDEL	64,6	65,9	BAIXA	BAIXA	53,9	51,9		(<u>:</u>)	\odot	Escherichia coli.	Fósforo total.	

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						os dos in					mparaçã		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA		CT		ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
marogranea	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio São Marcos	PB035	PARACATU	72,4	76,6	BAIXA	BAIXA	52,9	53,9		\odot	•••			
		Rio Verde (PN1)	PB004	GUARDA-MOR	67,7	64,9	BAIXA	BAIXA	49,3	49,4		(;)		Escherichia coli.		
			PB001	RIO PARANAÍBA	58,9	62,2	BAIXA	BAIXA	54,2	51		\odot	\odot	Escherichia coli.	Fósforo total.	
Rio Paranaíba	PN1 - Alto Rio		PB002	PATOS DE MINAS	61	57,1	BAIXA	BAIXA	53,2	55				Escherichia coli.	Fósforo total.	
NIO Parallalba	Paranaíba PN1 - Alto Rio Paranaíba	Rio Paranaíba	PB003	PATOS DE MINAS	48,3	49,3	BAIXA	MÉDIA	54,4	57,1		(3)		Escherichia coli.	Fósforo total.	Chumbo total.
		NIO Paranaiba	PB032	COROMANDEL	61,7	60,6	BAIXA	BAIXA	54,6	53,9		\odot		Escherichia coli.	Fósforo total.	
			PB005	COROMANDEL	64	63,3	BAIXA	BAIXA	56,9	53,3		\odot		Escherichia coli.	Fósforo total.	
			PB007	ARAGUARI, CUMARI (GO)	67,4	77,7	BAIXA	BAIXA	51,4	49,8	\odot	\odot		Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

(8) O indicador piorou ou manteve-se na pior condição de qualidade

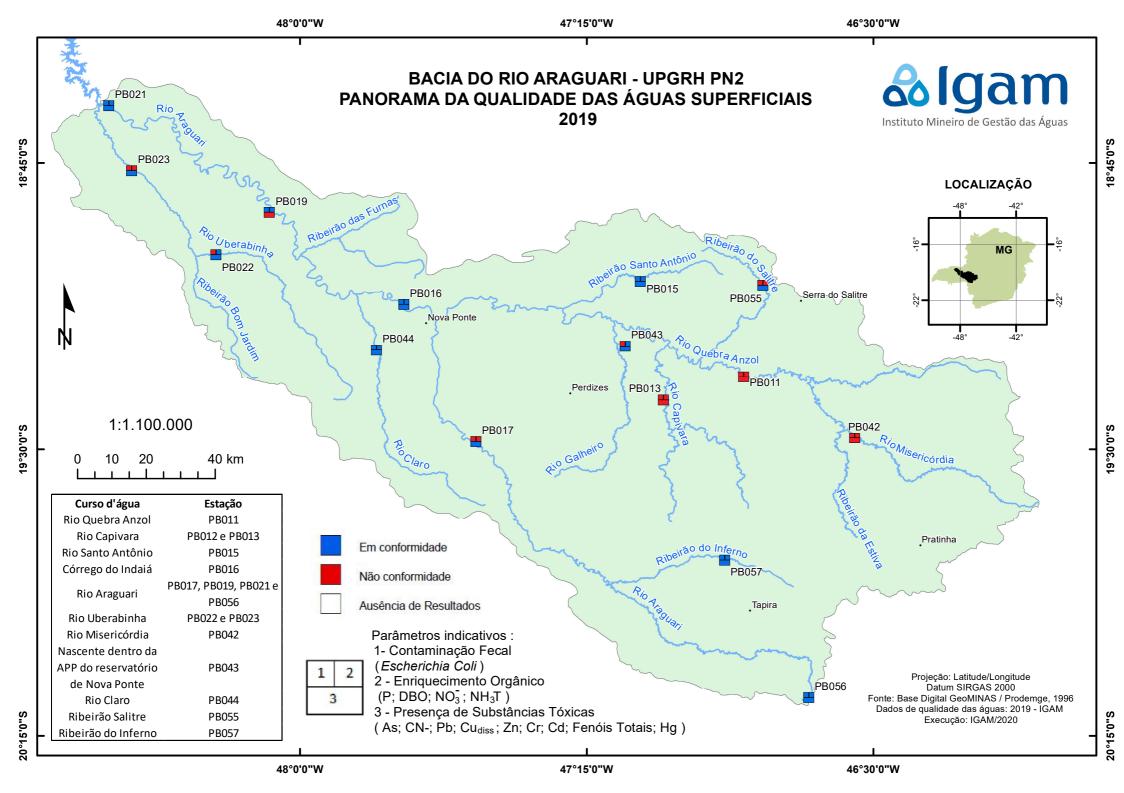


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore		-	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T	IE	Т	Indicad	ores 201	.8/2019		Parâmetros indicativos de:	
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córredo do Indaiá	PB016	NOVA PONTE	76,3	75	BAIXA	BAIXA	50,2	49,6		(<u>i</u>)				
		Córrego da estação ambiental CEMIG	PB043	PERDIZES	65,8	70,4	BAIXA	BAIXA	49,1	48,8	\odot	(3)		Escherichia coli.		
		Ribeirão do Inferno	PB057	TAPIRA	86	80,2	BAIXA	BAIXA	56,1	56,9		(<u>i</u>)	•••			
		Ribeirão Salitre	PB055	PATROCÍNIO	64,1	64,8	BAIXA	BAIXA	53,4	55,4		③		Escherichia coli.	Fósforo total.	
Rio Paranaíba	PN2 - Rio Araguari	Ribeirão Santo Antônio (PN2)	PB015	PATROCÍNIO	70	70,4	BAIXA	BAIXA	49,4	50,3		(<u>(</u>)				
		Rio Capivara	PB013	PERDIZES	61,6	51,4	BAIXA	MÉDIA	57,8	58,3		(3)		Escherichia coli.	Fósforo total.	Chumbo total.
		Rio Claro	PB044	UBERABA	68,6	69	BAIXA	BAIXA	49,7	48,8		(<u>i</u>)	•••			
		Rio Misericórdia	PB042	IBIÁ	53,2	50,9	BAIXA	BAIXA	51,1	55,5		(<u>i</u>)	(3)	Escherichia coli.	Fósforo total.	Chumbo total.
		Rio Quebra Anzol	PB011	PERDIZES, SERRA DO SALITRE	67,6	60,2	BAIXA	MÉDIA	51,7	53,7		(3)	(3)	Escherichia coli.	Fósforo total.	Chumbo total.

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	019	Co	mparaç	ăо	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QΑ	•	CT		ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Thurogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			PB022	UBERLÂNDIA	70,7	67,4	BAIXA	BAIXA	48,8	49,2		\odot	•••	Escherichia coli.		
		Rio Uberabinha	PB023	UBERLÂNDIA	52,4	52,6	ALTA	MÉDIA	57	57,5		(1)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
Rio Paranaíba	PN2 - Rio Araguari		PB056	SÃO ROQUE DE MINAS	73,3	67,9	BAIXA	BAIXA	49,1	49,4		(<u>C</u>)				
	J	Rio Araguari	PB017	SACRAMENTO, SANTA JULIANA	72,3	70,4	BAIXA	BAIXA	50,2	52,2		(<u>i</u>)	\odot	Escherichia coli.	Fósforo total.	
		NIO ALABUATI	PB019	ARAGUARI, UBERLÂNDIA	81,8	78,8	BAIXA	BAIXA	50,6	48,8		(<u>i</u>)				Chumbo total.
			PB021	ARAGUARI, TUPACIGUARA	81,9	79,4	BAIXA	BAIXA	51	50,3		\odot				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[😮] O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

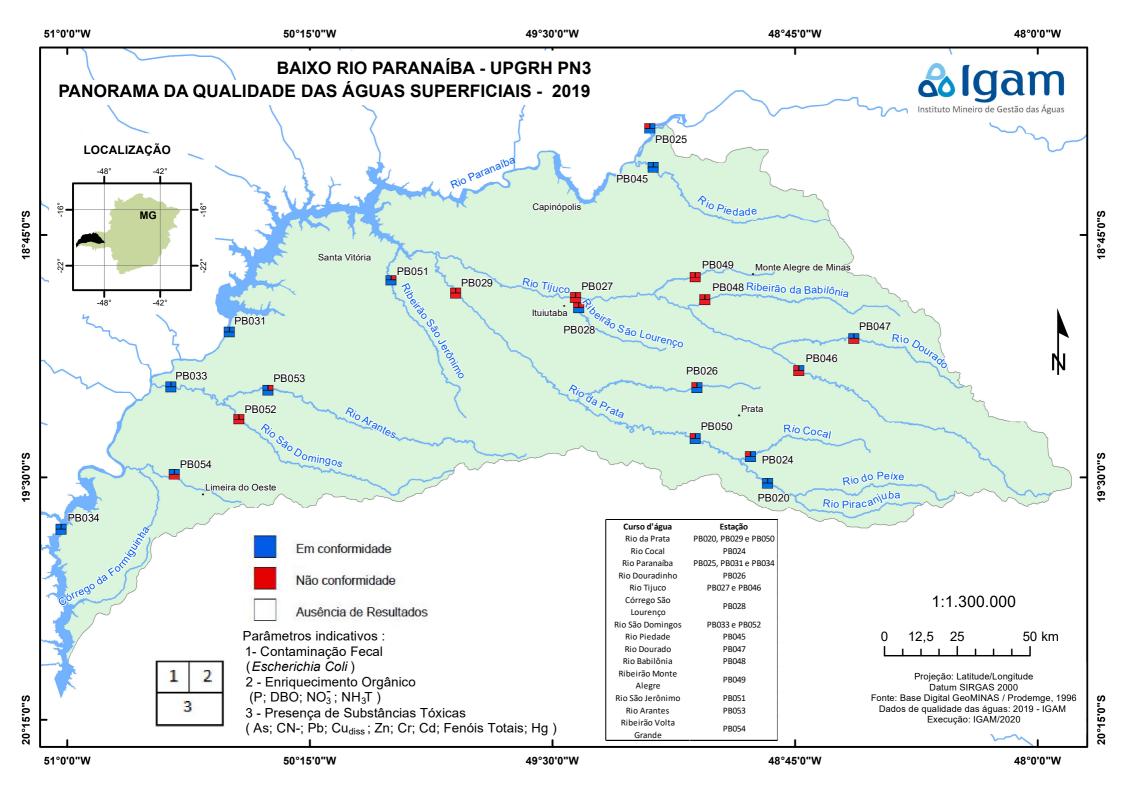


Tabela 7: Síntese comparativa dos resultados do Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal no Média do IQA no Período Solicitado de 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	(CT	IE	T	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Tildiografica	Tilurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego São Lourenço	PB028	ITUIUTABA	72,6	70,4	BAIXA	BAIXA	51	51,2	•••	\odot		Escherichia coli.	Fósforo total.	
		Ribeirão Monte Alegre	PB049	MONTE ALEGRE DE MINAS	58,5	57,6	BAIXA	ALTA	51,7	52,8	•••	(3)		Escherichia coli.	Fósforo total.	Zinco total.
		Ribeirão Volta Grande	PB054	LIMEIRA DO OESTE	72,2	69,3	BAIXA	MÉDIA	49,8	50,3		(3)	•••			Cianeto Livre.
	PN3 -	Rio Arantes	PB053	UNIÃO DE MINAS	70,8	65,6	BAIXA	BAIXA	54,1	54,3		\odot			Fósforo total.	
Rio Paranaíba	Afluentes Mineiro do Baixo	Rio Babilônia	PB048	MONTE ALEGRE DE MINAS	70,9	68,1	BAIXA	ALTA	51,1	51,2		(3)		Escherichia coli.	Fósforo total.	Zinco total.
	Paranaíba	Rio Cocal	PB024	PRATA	71	64,9	BAIXA	BAIXA	49,9	50,4		\odot	•••	Escherichia coli.		
			PB020	PRATA	72,4	73,5	BAIXA	BAIXA	48,8	49,1		\odot				
		Rio da Prata (PN3)	PB050	PRATA	57	59,6	BAIXA	BAIXA	53,1	51		(<u>i</u>)	\odot	Escherichia coli.		
			PB029	GURINHATÃ, ITUIUTABA	68	63	BAIXA	ALTA	52,2	55,1		(3)	•••	Escherichia coli.	Fósforo total.	Zinco total.

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	(CT	IE	T	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Hidrografica	Hidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Douradinho	PB026	PRATA	57,2	64,1	BAIXA	BAIXA	54,5	49,6		(C)	(3)	Escherichia coli.		
		Rio Dourado (PN3)	PB047	UBERLÂNDIA	61,4	71,1	BAIXA	ALTA	52,7	49,4	\odot	(3)	\odot			Zinco total.
		Rio Piedade	PB045	ARAPORÃ	72,6	71	BAIXA	BAIXA	50,1	50,7		(<u>C</u>)				
		Rio São Domingos	PB033	LIMEIRA DO OESTE, SANTA VITÓRIA	76,2	75,2	MÉDIA	BAIXA	50,6	51,6		\odot				
	PN3 -	(PN3)	PB052	LIMEIRA DO OESTE	65,8	57,1	BAIXA	MÉDIA	52,8	53,2		(3)		Escherichia coli.	Fósforo total.	Cianeto Livre.
Rio Paranaíba	Afluentes o Paranaíba Mineiro do	Rio São Jerônimo	PB051	GURINHATÃ	64,2	71,9	BAIXA	BAIXA	53,2	50,6	\odot	(<u>i</u>)	\odot		Fósforo total.	
	Baixo Paranaíba	Rio Tijuco	PB046	UBERLÂNDIA	67,8	69,4	ALTA	ALTA	49,8	50,5		(3)		Escherichia coli.		Cobre dissolvido, Zinco total.
		Kio rijuco	PB027	ITUIUTABA	68,2	67,2	BAIXA	ALTA	52	52,7		(3)		Escherichia coli.	Fósforo total.	Zinco total.
			PB025	ARAPORÃ, ITUMBIARA (GO)	66	70	BAIXA	BAIXA	51,8	50,2	\odot	③		Escherichia coli.		
		Rio Paranaíba	PB031	SANTA VITÓRIA, SÃO SIMÃO (GO)	70,7	76,8	BAIXA	BAIXA	48,8	49,4		(3)				
			PB034	CARNEIRINHO	82,6	85,8	BAIXA	BAIXA	50,1	48,8		(<u>(;</u>				

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[😝] O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

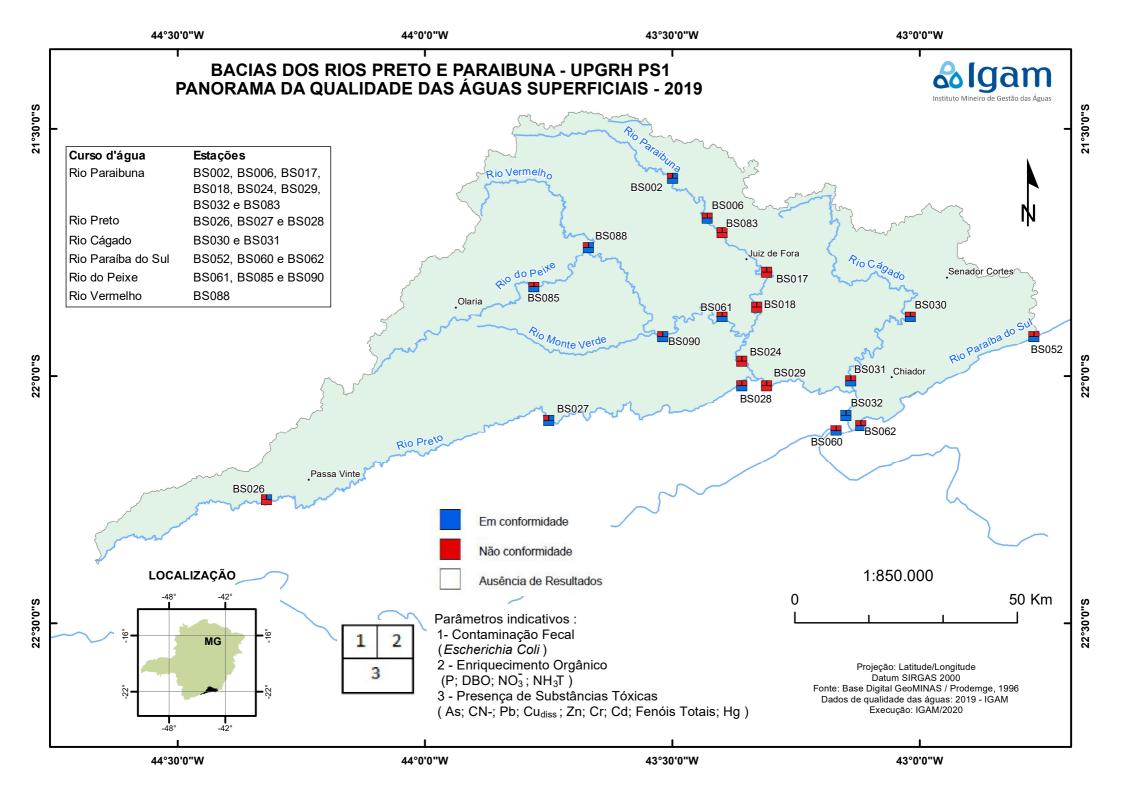


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

						II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL		
Bacia	Circunscrição				Re	sultado	s dos in	dicadore	s em 20	19	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		CT		Т	Indicad	ores 201	.8/2019		Parâmetros indicativos de:	
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Cágado	BS030	MAR DE ESPANHA	61,2	68,6	MÉDIA	BAIXA	52,1	52,3		\odot		Escherichia coli.	Fósforo total.	
		No Cagado	BS031	SANTANA DO DESERTO	65,6	66,3	BAIXA	BAIXA	50,9	51,9		\odot		Escherichia coli.	Fósforo total.	
			BS061	BELMIRO BRAGA	70,7	76,4	BAIXA	BAIXA	50,4	50,4		\odot		Escherichia coli.	Fósforo total.	
Rio Paraíba do	PS1 - Rios Preto e	Rio do Peixe (PS1)	BS085	LIMA DUARTE	60,6	62,6	BAIXA	BAIXA	52,4	51,7		\odot	\odot	Escherichia coli.	Fósforo total.	
Sul	Paraibuna		BS090	JUIZ DE FORA	68,8	71,4	BAIXA	BAIXA	50,5	50,7	\odot	\odot		Escherichia coli.		
			BS052	CARMO (RJ)	65	72,5	BAIXA	BAIXA	54,8	53,6	\odot	\odot		Escherichia coli.	Fósforo total.	
		Rio Paraíba do Sul	BS060	TRÊS RIOS (RJ)	58,4	62,2	BAIXA	BAIXA	55,3	55,8		\odot		Escherichia coli.	Fósforo total.	
			BS062	SAPUCAIA (RJ)	60,5	61,3	BAIXA	BAIXA	54,1	53,4		\odot		Escherichia coli.	Fósforo total.	

									NDICAD		-			PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição						s dos in					omparaç		Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		Т		lores 201			Parâmetros indicativos de:	1
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			BS002	JUIZ DE FORA	67,1	66,6	BAIXA	BAIXA	49,1	52		\odot		Escherichia coli.		
			BS006	JUIZ DE FORA	54,4	49,5	ALTA	BAIXA	51	53,1		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio.	
			BS017	JUIZ DE FORA	42,4	34,5	MÉDIA	ALTA	54,6	57,9		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cádmio total, Cianeto Livre, Zinco total.
		Rio Paraibuna	BS018	MATIAS BARBOSA	47,2	46,2	ALTA	ALTA	57,4	58,2		②		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cádmio total, Cianeto Livre, Zinco total.
		NIO Faraibulia	BS024	BELMIRO BRAGA	59,8	61,6	BAIXA	ALTA	53,3	53,8		(3)	•••	Escherichia coli.	Fósforo total.	Cádmio total, Zinco total.
Rio Paraíba do Sul	PS1 - Rios Preto e Paraibuna		BS029	COMENDADOR LEVY GASPARIAN (RJ), SIMÃO PEREIRA	65	65,5	ALTA	ALTA	52,9	54,7		②		Escherichia coli.	Fósforo total.	Zinco total.
			BS032	CHIADOR	68	73,1	BAIXA	BAIXA	54,2	53,5	\odot	(3)				
			BS083	JUIZ DE FORA	48,1	42,1	MÉDIA	ALTA	51,9	53,9		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Cádmio total, Cianeto Livre, Zinco total.
			BS026	QUATIS (RJ)	71,8	72,1	BAIXA	BAIXA	49,3	50,9		\odot		Escherichia coli.		Cobre dissolvido.
		Rio Preto (PS1)	BS027	QUATIS (RJ)	65,8	69,4	BAIXA	BAIXA	50,1	50,7		(<u>(</u>)	•••	Escherichia coli.		
			BS028	COMENDADOR LEVY GASPARIAN (RJ)	66,1	65,6	BAIXA	BAIXA	52	53,6		\odot	•••	Escherichia coli.	Fósforo total.	
		Rio Grão Mogol (PS1)	BS088	JUIZ DE FORA	67	65	BAIXA	BAIXA	48,9	50,6		\odot	•••	Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

[🚫] O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

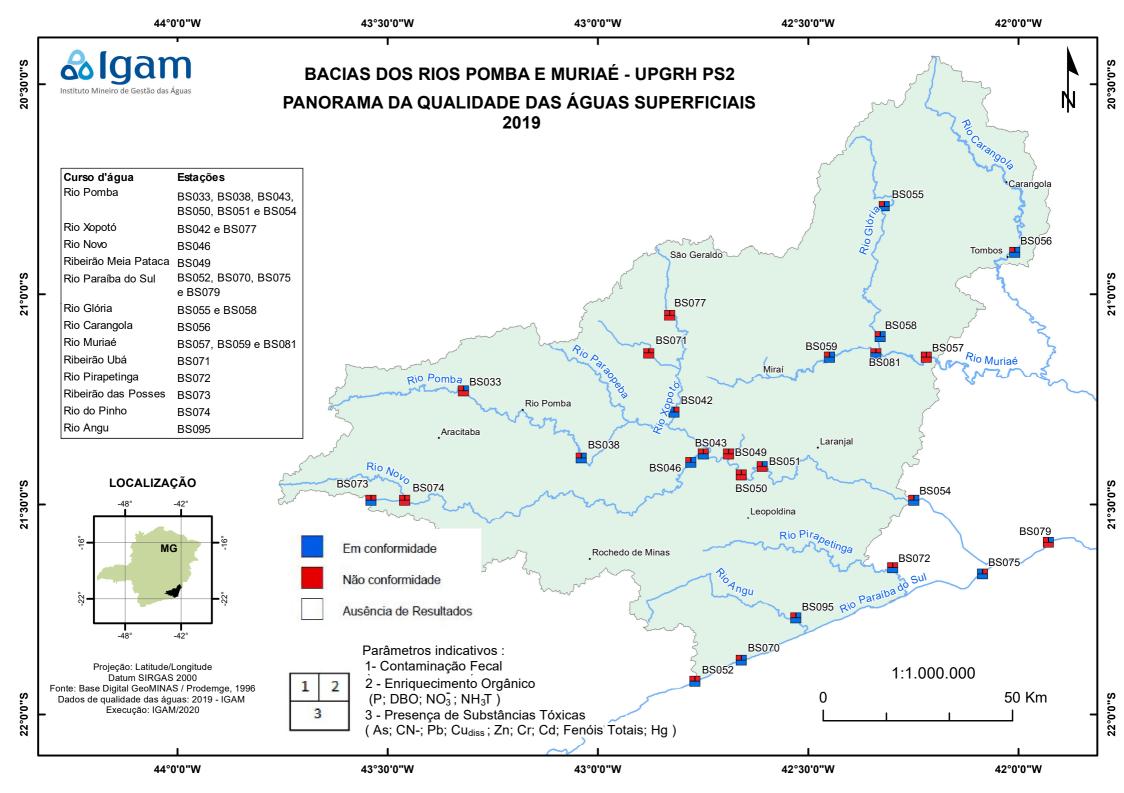


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

							atenat	eram ao Il	IDICAD		-013			PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Davis	C:				Re	sultado	s dos in	dicadore	s em 20	19	Co	omparaç	ão		norama de Qualidade das Águ	
Bacia	Circunscrição	Corpo de água	Estação	Municípios	IC	QΑ	(T	16	Т	Indicad	lores 201	.8/2019		Parâmetros indicativos de:	
Hidrográfica	Hidrográfica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão das Posses	BS073	SANTOS DUMONT	43,7	49	MÉDIA	ALTA	59,7	58,9	•••	(3)	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão Meia Pataca	BS049	CATAGUASES	42,9	50,5	BAIXA	ALTA	57,2	54,3	\odot	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cobre dissolvido.
		Ribeirão Ubá	BS071	UBÁ	33,5	31,4	ALTA	ALTA	62,3	62,8		②		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Chumbo total, Cianeto Livre, Zinco total.
		Rio Angu	BS095	VOLTA GRANDE	56,1	57,3	BAIXA	BAIXA	52,3	51,3		\odot	\odot	Escherichia coli.		
		Rio Carangola	BS056	TOMBOS	65,3	70,3	BAIXA	BAIXA	51,7	51	\odot	(3)	(<u>•</u>	Escherichia coli.		
		Rio do Pinho	BS074	SANTOS DUMONT	65,3	61	BAIXA	ALTA	56,9	57,8		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.
Rio Paraíba do Sul	PS2 - Rios Pomba e	D: 01/ :	BS055	SÃO FRANCISCO DO GLÓRIA	52,2	52,6	BAIXA	BAIXA	51,5	51,5		\odot	•••	Escherichia coli.		
	Muiriaé	Rio Glória	BS058	MURIAÉ	58,7	61,2	BAIXA	BAIXA	53,3	52,2		\odot	•••	Escherichia coli.		
			BS057	PATROCÍNIO DO MURIAÉ	57,1	62,6	BAIXA	ALTA	51,9	52,5		(3)	(3)	Escherichia coli.	Fósforo total.	Chumbo total.
		Rio Muriaé	BS059	MURIAÉ	61,4	58,4	BAIXA	BAIXA	52,3	51		\odot	\odot	Escherichia coli.		
			BS081	MURIAÉ	48,6	48,6	BAIXA	BAIXA	54	55,4	<u></u>	\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio Novo	BS046	CATAGUASES	61,5	68,2	BAIXA	BAIXA	52	51,5		(;)	\odot	Escherichia coli.		
			BS070	CARMO (RJ)	59,9	64,7	BAIXA	BAIXA	52,1	52,7	<u>••</u>	\odot	•••	Escherichia coli.		
		Rio Paraíba do Sul	BS075	APERIBÉ (RJ), ITAOCARA (RJ)	69,3	69,6	BAIXA	BAIXA	52,3	53,7	•••	\odot	•••		Fósforo total.	
			BS079	CAMBUCI (RJ)	64,1	66,4	BAIXA	BAIXA	50,9	54,4		\odot		Escherichia coli.		Zinco total.

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore		_	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA	(T		ΞT	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
Thurogranica	Thurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Pirapetinga	BS072	SANTO ANTÔNIO DE PÁDUA (RJ)	53,5	52,7	BAIXA	BAIXA	56,5	57,4		(<u>3</u>)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
			BS033	MERCÊS	56,6	60,1	BAIXA	ALTA	52,3	51		(3)	\odot	Escherichia coli.		Zinco total.
			BS038	GUARANI	51,6	60,6	BAIXA	BAIXA	52,9	51,7		(<u>i</u>)	\odot	Escherichia coli.		
			BS043	CATAGUASES	57,6	65,5	BAIXA	BAIXA	55,2	53,1		(<u>i</u>)	•••	Escherichia coli.	Fósforo total.	
Rio Paraíba do	PS2 - Rios Pomba e	Rio Pomba	BS050	CATAGUASES	53,4	57,7	BAIXA	ALTA	53,4	52,1		(3)		Escherichia coli.	Fósforo total.	Zinco total.
Sul	Muiriaé		BS051	CATAGUASES	57,3	62,8	BAIXA	ALTA	53,1	52,8		(3)		Escherichia coli.		Cobre dissolvido.
			BS054	SANTO ANTÔNIO DE PÁDUA (RJ)	67,8	71,6	BAIXA	BAIXA	51,7	54,4	\odot	(<u>3</u>)		Escherichia coli.		
			BS042	ASTOLFO DUTRA, DONA EUSÉBIA	53,7	62	BAIXA	BAIXA	59,9	56	••	\odot			Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio Xopotó (PS2)	BS077	VISCONDE DO RIO BRANCO	23,8	25	ALTA	ALTA	65,5	66,4	\odot	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre, Fenóis totais.

② O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

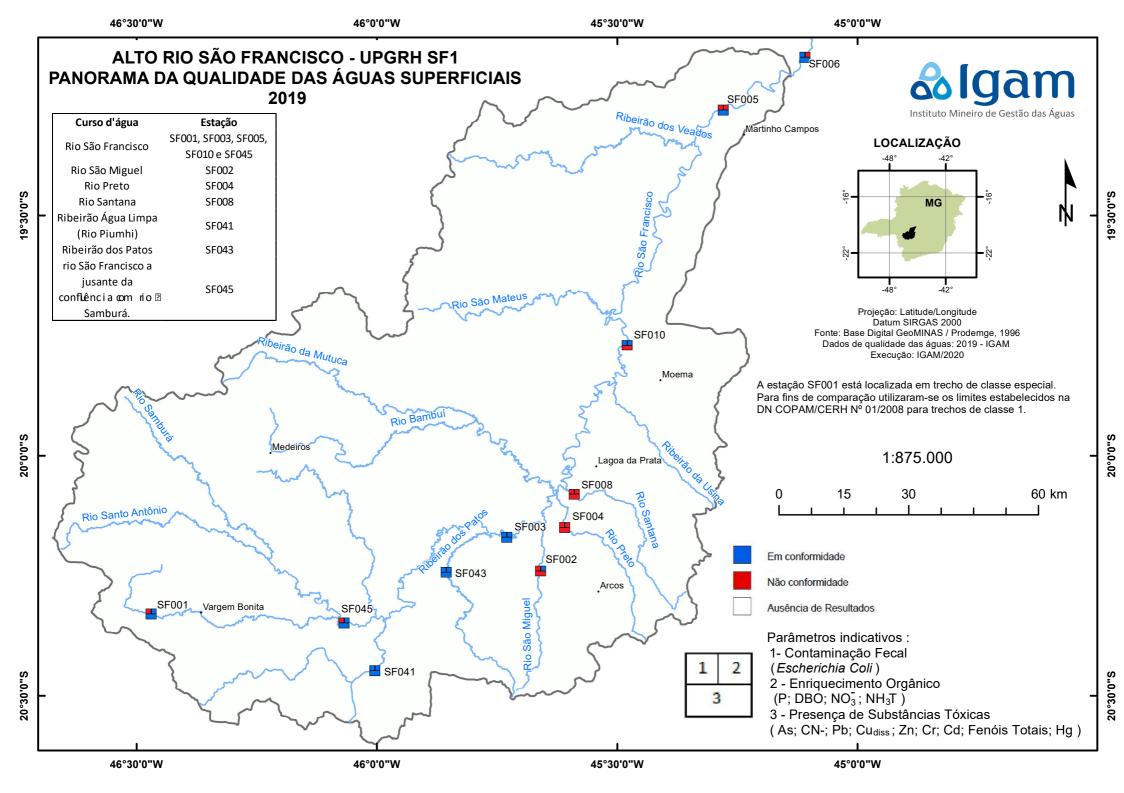


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QA	C	CT .	IE	T	Indicad	ores 201	.8/2019		Parâmetros indicativos de:	
niurogranica	Hidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Água Limpa	SF041	PIUMHI	67,2	71,8	BAIXA	BAIXA	53,1	49,9	\odot	(<u>i</u>)	\odot			
		Ribeirão dos Patos	SF043	IGUATAMA	70,3	72,9	BAIXA	BAIXA	51,1	49,5		(<u>i</u>)	•••			
		Rio Preto (SF1)	SF004	ARCOS	60,4	59	BAIXA	ALTA	62,2	58,6		(3)	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Zinco total.
		Rio Santana (SF1)	SF008	JAPARAÍBA, LAGOA DA PRATA	59,7	57,7	BAIXA	ALTA	50	50,1		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio.	Chumbo total, Zinco total.
~	SF1 -	Rio São Miguel (SF1)	SF002	ARCOS, IGUATAMA	62,6	67	BAIXA	ALTA	52,6	49,7		(3)	\odot	Escherichia coli.		Zinco total.
Rio São Francisco	Afluentes do Alto São Francisco		SF001	SÃO ROQUE DE MINAS, VARGEM BONITA	75,4	74,9	*	*	51,2	48,8	•••	×				
		2. 67 5	SF045	PIUMHI	63,8	69,2	BAIXA	BAIXA	52,8	51,6		\odot	\odot	Escherichia coli.		
		Rio São Francisco (SF)	SF003	IGUATAMA	66,9	65,8	BAIXA	BAIXA	52,6	53,1		(<u>i</u>)				
			SF010	LUZ, MOEMA	65,2	69	BAIXA	ALTA	57,2	55,6		(3)	•••			Zinco total.
			SF005	ABAETÉ, MARTINHO CAMPOS	70,8	62,1	BAIXA	BAIXA	54,5	58		\odot		Escherichia coli.	Fósforo total.	

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

🗶 Não foi possível fazer a comparação com o ano anterior

* CT não calculado, por não haver limite para Classe Especial

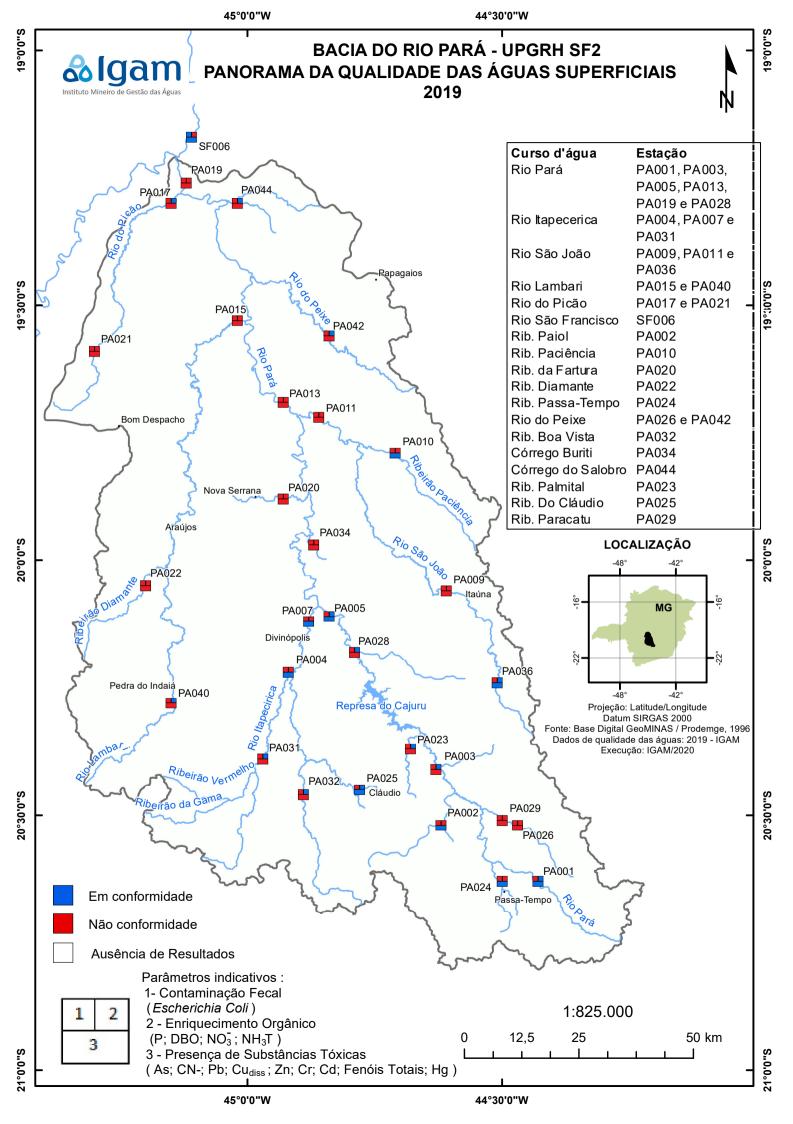


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						s dos in		_			omparaç		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		ET		lores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego Buriti ou Córrego do Pinto	PA034	SÃO GONÇALO DO PARÁ	28	36,3	ALTA	ALTA	62,8	57,3			\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre.
		Córrego do Salobro	PA044	POMPÉU	76,4	64,6	BAIXA	ALTA	49,4	50,3				Escherichia coli.		Cobre dissolvido.
		Ribeirão Boa Vista	PA032	CLÁUDIO, ITAPECERICA	61,2	60,1	MÉDIA	ALTA	51,3	52,5		(3)	(3)	Escherichia coli.		Zinco total.
		Ribeirão da Fartura	PA020	NOVA SERRANA	47,3	51,4	ALTA	ALTA	60,6	55,9	\odot	<u>(3)</u>	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Fenóis totais, Zinco total.
Rio São	SF2 - Rio Pará	Ribeirão Diamante	PA022	SANTO ANTÔNIO DO MONTE	54,9	56,1	MÉDIA	ALTA	53,9	54,1		(3)	•••	Escherichia coli.	Fósforo total.	Zinco total.
Francisco		Ribeirão do Cláudio	PA025	CLÁUDIO	53,2	55,8	BAIXA	BAIXA	58,2	55,5		\odot		Escherichia coli.		
		Ribeirão Lava-pés ou Ribeirão Paiol	PA002	CARMÓPOLIS DE MINAS	58,4	52,9	ALTA	ALTA	64,7	61		<u>:</u>	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão Paciência	PA010	ONÇA DE PITANGUI, PARÁ DE MINAS	49,7	46,8	ALTA	ALTA	63,7	63,6	••	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão Palmital	PA023	CLÁUDIO	63	65,6	BAIXA	ALTA	53,2	52,4		(3)	•••	Escherichia coli.		Cobre dissolvido, Zinco total.
		Ribeirão Paracatu	PA029	PIRACEMA	54,1	51,2	BAIXA	BAIXA	53,2	55,4		(<u>·</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição							dicadore		_		omparaçã		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		Т		ores 201	_		Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Passa Tempo	PA024	PASSA TEMPO	57,3	47,6	BAIXA	BAIXA	53,6	58		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio do Peixe (SF2 - Município	PA026	PIRACEMA	50,6	50,2	ALTA	BAIXA	56,8	54,7		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Zinco total.
		Piracema)	PA042	PITANGUI	66,4	67,1	BAIXA	ALTA	52,7	49,8		(3)	\odot	Escherichia coli.		Cobre dissolvido, Zinco total.
		Rio do Picão	PA017	MARTINHO CAMPOS	55,8	70,8	ALTA	ALTA	55,4	49,5	\odot	(3)	\odot	Escherichia coli.		Zinco total.
		KIO do Picao	PA021	BOM DESPACHO	66,2	62,1	BAIXA	ALTA	53,5	53		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Zinco total.
Rio São Francisco	SF2 - Rio Pará		PA004	DIVINÓPOLIS, SÃO SEBASTIÃO DO OESTE	67,5	62,2	BAIXA	BAIXA	54,8	55,6		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio Itapecerica	PA007	DIVINÓPOLIS	50,7	49,6	BAIXA	BAIXA	56	56,4		\odot		Escherichia coli.	Fósforo total.	
			PA031	ITAPECERICA	69	67,6	BAIXA	ALTA	50,1	51,5		(3)		Escherichia coli.		Zinco total.
			PA015	LEANDRO FERREIRA, MARTINHO CAMPOS	76	68,3	BAIXA	ALTA	50,4	52,1	(3)	(3)	(3)	Escherichia coli.	Fósforo total.	Zinco total.
		Rio Lambari (SF2)	PA040	PEDRA DO INDAIÁ	66,4	70,5	BAIXA	ALTA	50,7	49,3	\odot	(3)	•••	Escherichia coli.		Zinco total.
			PA001	PASSA TEMPO	63,1	60,8	BAIXA	BAIXA	51,1	51,5	<u></u>	\odot	•••	Escherichia coli.		

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore	-	_		omparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		CT .		Т		ores 201			Parâmetros indicativos de:	
g					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			PA003	CARMÓPOLIS DE MINAS, CLÁUDIO, ITAGUARA	64,5	68	BAIXA	ALTA	52,6	50,2		8	\odot	Escherichia coli.		Zinco total.
			PA005	CARMO DO CAJURU, DIVINÓPOLIS	67,4	64,7	BAIXA	BAIXA	50,5	51		\odot		Escherichia coli.		
		Rio Pará	PA013	CONCEIÇÃO DO PARÁ, PITANGUI	66	61,4	ALTA	ALTA	52,2	53,9				Escherichia coli.	Fósforo total.	Cianeto Livre, Fenóis totais, Zinco total.
Rio São	SF2 - Rio Pará		PA019	MARTINHO CAMPOS, POMPÉU	75	69,2	MÉDIA	ALTA	53,6	53,4		(3)	•••	Escherichia coli.	Fósforo total.	Zinco total.
Francisco			PA028	CARMO DO CAJURU, DIVINÓPOLIS	58,8	58,3	MÉDIA	MÉDIA	51,8	52,8			③	Escherichia coli.		Cianeto Livre.
			PA009	ITAÚNA	33,8	34	ALTA	ALTA	60,8	59,1		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Chumbo total, Cianeto Livre.
		Rio São João (SF2)	PA011	CONCEIÇÃO DO PARÁ, PITANGUI	63,8	60,9	BAIXA	ALTA	56,9	55,8		(3)	•••	Escherichia coli.	Fósforo total.	Zinco total.
			PA036	ITATIAIUÇU	69,5	68,6	BAIXA	BAIXA	50,5	52,6		\odot		Escherichia coli.		

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

45°0'0"W 44°0'0"W **BACIA DO RIO PARAOPEBA - UPGRH SF3** PANORAMA DA QUALIDADE DAS ÁGUAS SUPERFICIAIS 2019 Curso d'água Estação Rio Paraopeba BO022, BP027, Represa Três Marias BP029, BP036. **BP099** BP068, BP070, BP072. BP078. BP079, BP082, BP083 e BP099 19°0'0"S S..0.0.61 Rio Brumado BP024 Rio Camapuã BP026 Rio Macaúbas BP032 Rio Veloso **BP066** Rib. Serra Azul BP069 BP078 Rio Betri BP071 e BP088 BP073 Rib. das Areias ou Riacho das Pedras Rib. Dos Macacos **RP074** BP075 Córrego Pintado BP098 Caetanópolis BP076 Rib. São João BP080 e BP084 Rio Maranhão BP083 BP081 e BP085 Rib. Ibirité BP076 BP086 Rib. Sarzedo Papagaios Rib. Grande BP090 Rib. Casa Grande BP092 BP074 Rib. Catarina **BP094** Rio Manso **BP096** Rib. dos Macacos Rib. Do Cedro **BP098** Rib. Soledade **BP014** BP082 **Rio Preto BP016 LOCALIZAÇÃO** Córrego Mãe d'água BP018 Córrego Maria-José **BP020** Esmeraldas BP090 MG Represa de Vargem das Flores Florestal BP072 BP069 å. BP073 20°0'0"S 20°0'0"S Mateus Leme BP085 -42° BP070 BP086 BP092 Brumadinho BP094 Jeloso 1:1.000.000 BP096 **BP066** 50 Km 0 BP036 210 Projeção: Latitude/Longitude Datum SIRGAS 2000 Moeda BP032 Fonte: Base Digital GeoMINAS / Prodemge, 1996 Dados de qualidade das águas: 2019 - IGAM <u>■</u>BP029_{BP018} Execução: IGAM/2020 **BP016** Piedade dos Gerais BP027BP020 BP018 Ouro Branco Em conformidade BP080 BP026 BP014 BP084 BP079 Não conformidade BP024 Ausência de Resultados Parâmetros indicativos : 1- Contaminação Fecal (Escherichia Coli) 1 2 **BP022** 2 - Enriquecimento Orgânico (P; DBO; NO₃; NH₃T) 3 3 - Presença de Substâncias Tóxicas (As; CN-; Pb; Cu diss; Zn; Cr; Cd; Fenóis Totais; Hg) 45°0'0"W 44°0'0"W

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	s em 20	019	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	(CT	II	ET	Indicad	lores 201	8/2019		Parâmetros indicativos de:	
murogranica	Tilulogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego dos Gomes	BPE9	FELIXLÂNDIA	*	74,7	*	BAIXA	*	54,3	×	×	×	Escherichia coli.	Fósforo total.	
		Córrego Mãe- D'água	BP018	CONGONHAS	82,9	81,3	BAIXA	BAIXA	48,8	49,1		\odot				
		Córrego Maria- josé	BP020	CONGONHAS	60,2	55,6	BAIXA	BAIXA	51,9	52,5		\odot	(3)	Escherichia coli.	Fósforo total.	
		Córrego Pintado	BP075	IBIRITÉ	49,3	39,6	ALTA	ALTA	70,7	72,8		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	Chumbo total, Cianeto Livre.
		Ribeirão Casa	BP092	BRUMADINHO	73	71,8	BAIXA	BAIXA	48,8	49,4		\odot		Escherichia coli.		
Rio São Francisco	SF3 - Rio Paraopeba	Branca	BP093	BRUMADINHO	*	71,5	*	BAIXA	*	51,2	×	×	×		Fósforo total.	
		Ribeirão Catarina	BP094	BRUMADINHO	73,6	79,8	BAIXA	BAIXA	49	48,8		(<u>(;</u>				
		Ribeirão das Areias ou Riacho	BP073	BETIM	35,2	37,4	ALTA	ALTA	68,2	73,6		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	
		Ribeirão do Cedro	BP098	CAETANÓPOLIS, PARAOPEBA	45,4	41,9	ALTA	ALTA	59	60,6		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	
		Ribeirão dos Macacos (SF3)	BP074	CACHOEIRA DA PRATA	54,8	53,3	MÉDIA	BAIXA	54,7	54,8		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Ribeirão Grande	вР090	ESMERALDAS	57,2	58,8	ALTA	BAIXA	57,4	55,5		(<u>:</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	IMITE LEGAL
Bacia	Circunscrição							dicadore				omparaç		Mapa do Pa	norama de Qualidade das Águ	uas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		T		lores 201			Parâmetros indicativos de:	1
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Ibirité	BP081	IBIRITÉ	38,8	30	ALTA	ALTA	65,3	69,5		\odot	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	Chumbo total, Cianeto Livre.
		Kibeli ao ibilite	BP085	IBIRITÉ	61,4	58,5	ALTA	ALTA	69,4	69,2		(3)	(3)	Escherichia coli.	Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre.
		Ribeirão São João	BP076	INHAÚMA, PARAOPEBA	74,8	73,9	ALTA	BAIXA	51,3	52		\odot	(3)			
		Ribeirão Sarzedo	BP086	BETIM, MÁRIO CAMPOS	46,4	40,8	MÉDIA	ALTA	64,5	65,4		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	Chumbo total, Cianeto Livre.
		Ribeirão Serra Azul	BP069	JUATUBA	52,9	49,5	BAIXA	BAIXA	56,1	58		\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Ribeirão Soledade	BP014	CONGONHAS	54,3	47,4	BAIXA	BAIXA	56,3	61,3		\odot		Escherichia coli.	Fósforo total, Nitrato.	
		Rio Betim	BP088	BETIM	75,7	82,2	BAIXA	MÉDIA	53,2	61,4		(3)	(3)		Fósforo total.	Cianeto Livre.
Rio São	SF3 - Rio	NIO BELIITI	BP071	BETIM, JUATUBA	28	30,3	MÉDIA	MÉDIA	66,9	67,1			(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	
Francisco	Paraopeba	Rio Brumado	BP024	ENTRE RIOS DE MINAS	55,6	54,4	BAIXA	BAIXA	50,7	50,8		(<u>:</u>)		Escherichia coli.	Demanda Bioquímica de Oxigênio.	
		Rio Camapuã	BP026	JECEABA	54	59,3	BAIXA	BAIXA	52,4	49,1		\odot	\odot	Escherichia coli.		
		Rio Macaúbas	BP032	BONFIM	67,2	68,3	BAIXA	BAIXA	50,5	49,7		\odot		Escherichia coli.		
		Rio Manso	BP096	BRUMADINHO	50,5	43,8	BAIXA	BAIXA	53,8	55,3		\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Rio Maranhão	BP084	CONSELHEIRO LAFAIETE	38,2	37,8	ALTA	ALTA	57,5	59,2		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	Cobre dissolvido.
		INIO IVIAI AIIIIIdO	BP080	CONGONHAS	46,3	46,6	MÉDIA	MÉDIA	56,8	58,8				Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total,	Cianeto Livre.
		Rio Preto (SF3)	BP016	CONGONHAS	61,9	62,3	BAIXA	BAIXA	51,2	51,9		(<u>:</u>)		Escherichia coli.		
		Rio Veloso	BP066	ITATIAIUÇU	61,8	58,4	BAIXA	ALTA	52	51,7		\odot	\odot	Escherichia coli.		Chumbo total, Cromo total.

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore	_		Co	omparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		CT		T		ores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			BP022	CRISTIANO OTONI	55,3	56,4	BAIXA	BAIXA	51	50,9		\odot		Escherichia coli.		
			BP079	CONGONHAS, CONSELHEIRO	70,4	68,8	BAIXA	BAIXA	48,8	50		(:)		Escherichia coli.		
			BP027	CONGONHAS, JECEABA	50,7	55,2	BAIXA	BAIXA	56,4	53,8		\odot		Escherichia coli.	Fósforo total.	
			BP029	BELO VALE	60,4	59,8	BAIXA	BAIXA	53,8	53,6		\odot	•••	Escherichia coli.		
			BP036	BRUMADINHO	63,4	63,5	BAIXA	BAIXA	52,1	53,9		\odot	•••	Escherichia coli.	Fósforo total.	Cobre dissolvido.
			BP070	BETIM, SÃO JOAQUIM DE	54,2	51,2	BAIXA	BAIXA	54,2	55,8		\odot		Escherichia coli.	Fósforo total.	
Rio São	SF3 - Rio	Rio Paraopeba	BP068	MÁRIO CAMPOS, SÃO JOAQUIM DE	61,4	53,3	BAIXA	MÉDIA	51,7	56,4		(3)	(3)	Escherichia coli.	Fósforo total.	Chumbo total.
Francisco	Paraopeba	Nio Paraopena	BP072	BETIM	58,6	52	ALTA	BAIXA	55,1	56,4		(<u>(;</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
			BPE2	BRUMADINHO	*	49,1	*	BAIXA	*	57,3	×	×	×	Escherichia coli.	Fósforo total.	
			BP082	ESMERALDAS, SÃO JOSÉ DA	64,2	59,9	MÉDIA	MÉDIA	54,9	57,8				Escherichia coli.	Fósforo total, Nitrato.	
			BPE3	BRUMADINHO	*	61,2	*	BAIXA	*	58,2	×	×	×	Escherichia coli.	Fósforo total.	
			BP083	PAPAGAIOS, PARAOPEBA	70,1	68,4	MÉDIA	BAIXA	55,8	55,9		(<u>(;</u>		Escherichia coli.	Fósforo total.	
			BP078	CURVELO, POMPÉU	71,2	69,3	MÉDIA	BAIXA	55,7	55		\odot		Escherichia coli.	Fósforo total.	
			BP099	FELIXLÂNDIA, POMPÉU	79,8	75,9	ALTA	BAIXA	53	52,2		\odot	•••	Escherichia coli.	Fósforo total.	

O indicador manteve-se na mesma qualidade da ano anterior

😢 O indicador piorou ou manteve-se na pior condição de qualidade

🗱 Não foi possível fazer a comparação com o ano anterior

* Ponto sem resultado

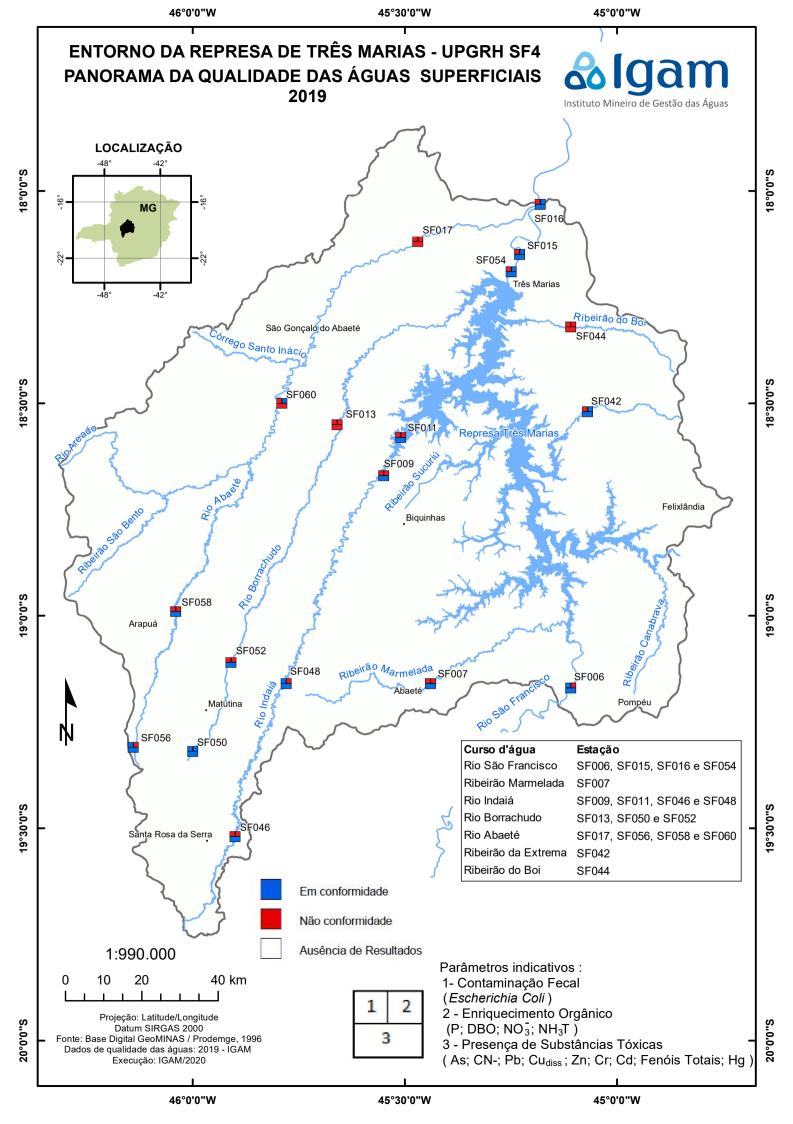
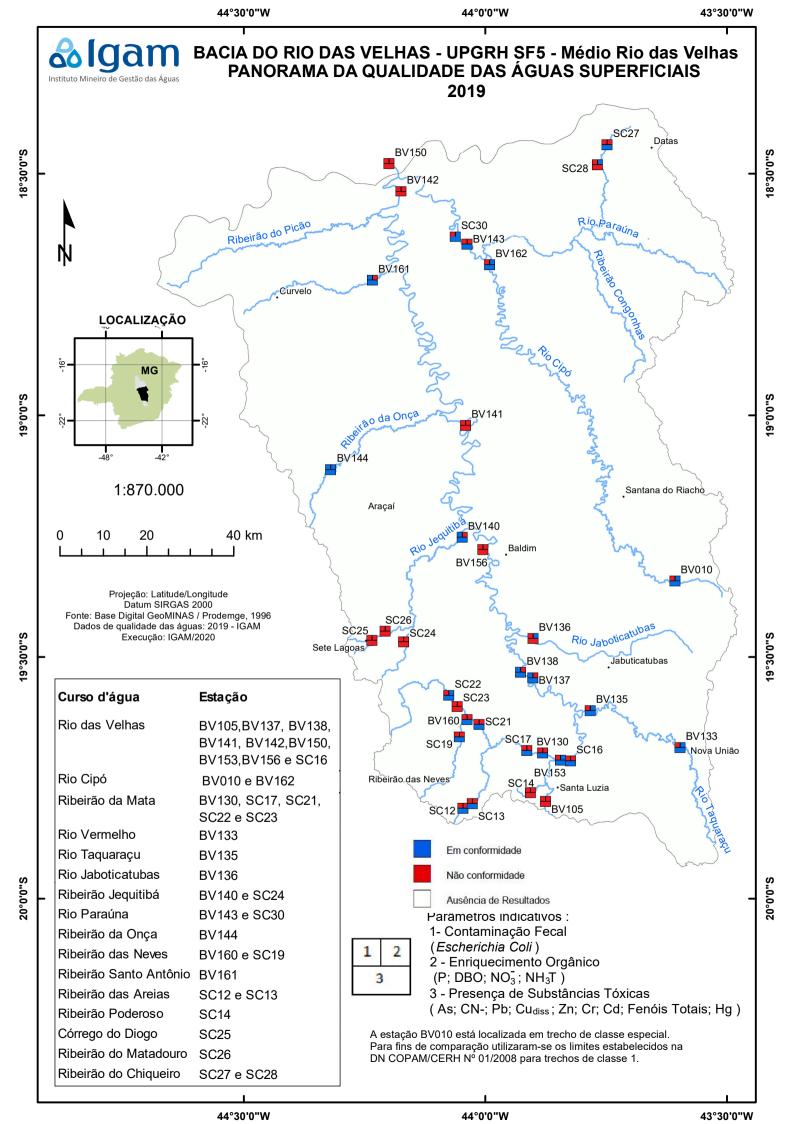


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore		_		mparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		Т		ores 201			Parâmetros indicativos de:	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			BPE6	FELIXLÂNDIA	*	87,4	*	BAIXA	*	54,6	×	×	×		Fósforo total.	
		Represa de Três Marias	BPE8	TRÊS MARIAS	*	87,6	*	BAIXA	*	54,1	×	×	×		Fósforo total.	
			BPE7	ABAETÉ	*	86,3	*	BAIXA	*	54,3	×	×	×		Fósforo total.	
		Ribeirão da Extrema Grande	SF042	FELIXLÂNDIA, TRÊS MARIAS	64,8	65,9	BAIXA	BAIXA	52,9	54,4		\odot		Escherichia coli.		
		Ribeirão do Boi	SF044	TRÊS MARIAS	59	51,3	MÉDIA	MÉDIA	54,5	59,2			(3)	Escherichia coli.	Fósforo total.	Chumbo total.
		Ribeirão Marmelada	SF007	ABAETÉ	42,2	41	MÉDIA	BAIXA	59,5	56,2		\odot	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Ribeirão Sucuriú	SF009	BIQUINHAS	40,8	58	ALTA	BAIXA	62,1	64,6	\odot	(<u>i</u>)	(3)	Escherichia coli.	Fósforo total.	
Rio São Francisco	SF4 - Entorno de Três Marias		SF056	RIO PARANAÍBA, SÃO GOTARDO	65,6	61,5	BAIXA	BAIXA	50,4	51,1		③			Fósforo total.	
		Rio Abaeté	SF058	ARAPUÁ, TIROS	62,2	56,6	BAIXA	BAIXA	54,8	56,8		(3)		Escherichia coli.	Fósforo total.	
			SF060	SÃO GONÇALO DO ABAETÉ	54,8	60,8	BAIXA	MÉDIA	58,1	51,4		(3)	\odot	Escherichia coli.		Chumbo total.
			SF017	SÃO GONÇALO DO ABAETÉ	57,7	65,2	BAIXA	MÉDIA	56,6	53,5		(3)		Escherichia coli.	Fósforo total.	Chumbo total.
			SF050	SÃO GOTARDO	56,7	54,6	BAIXA	BAIXA	51,3	53,2		(3)	(3)			
		Rio Borrachudo	SF052	TIROS	60,4	59	BAIXA	BAIXA	54,7	54,2		(<u>(;</u>		Escherichia coli.	Fósforo total.	
			SF013	MORADA NOVA DE MINAS, SÃO GONÇALO DO ABAETÉ	55,8	57,2	ALTA	ALTA	54,7	57,4		(3)		Escherichia coli.	Fósforo total.	Chumbo total.


								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						_	dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		ET	Indicad	ores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			SF046	ESTRELA DO INDAIÁ, SANTA	60.2	61.6	DAIVA	BAIXA	F2 2	52,9	(<u>•</u> •)	\odot	(<u>••</u>)	Escherichia coli.	Fósforo total.	
			35040	ROSA DA SERRA	60,2	01,0	DAIAA	DAIAA	33,2	32,9				Escriencina con.	FOSIOIO total.	
				CEDRO DO												
		Rio Indaiá	SF048	ABAETÉ,	62,3	63	BAIXA	BAIXA	55,8	55,7	(<u>•</u> •)	\odot	(<u>•</u> •)		Fósforo total.	
				QUARTEL GERAL, TIROS								0				
				TIKOS												
Rio São	SF4 - Entorno		SF011	BIQUINHAS	55,4	60,9	MÉDIA	BAIXA	58,5	53,9		\odot		Escherichia coli.	Fósforo total.	
Francisco	de Três Marias		SF006	ABAETÉ, POMPÉU	70,2	70,4	BAIXA	BAIXA	54,4	54	<u>••</u>	(:)	•••		Fósforo total.	
		Rio São Francisco	SF054	TRÊS MARIAS	73,8	62,2	BAIXA	BAIXA	49,4	50,4	(3)	(i)	•••	Escherichia coli.		
		(SF)	SF015	SÃO GONÇALO DO ABAETÉ, TRÊS MARIAS		68,8	BAIXA	BAIXA	49,8	49,5	(<u>•</u>	(;)	•••	Escherichia coli.		
			SF016	TRÊS MARIAS	67,2	73,4	BAIXA	BAIXA	52,7	49,3	\odot	(i)	\odot	Escherichia coli.		

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

🗶 Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

44°30'0"W 44°0'0"W BACIA DO RIO DAS VELHAS - UPGRH SF5 - Baixo Rio das Velhas PANORAMA DA QUALIDADE DAS ÁGUAS SUPERFICIAIS 2019 BV149 Curso d'água Esta çã o **LOCALIZAÇÃO** Rio das Velhas BV146, BV148 BV149, BV150 BV151 e BV152 Rio Pardo Pequeno Ribeirão BV145 Rio Bicudo BV147 17°30'0"S 17°30'0"S Córrego da Corrente BV157 BV159 Ribeirão Cotovelo BV158 Ribeirão da Corrente BV159 Rio Curumataí SC33 Várzea da Palma BV148 Córrego Matadouro SC39 BV157 BV158 BV151 Buenópolis Lassance tio Curimatai 18°0'0"S Augusto de Lima Rio Pardo Grande BV146 BV145 SC39 BV152 Rio Pardo Pequeno Corinto BV150 8°30'0"S 18°30'0"S Morro da Garça Em conformidade Não conformidade Ausência de Resultados 1:800.000 Parâmetros indicativos : 10 20 40 km 1- Contaminação Fecal (Escherichia Coli) 1 2 2 - Enriquecimento Orgânico Projeção: Latitude/Longitude (P; DBO; NO_3 ; NH_3T) Datum SIRGAS 2000 3 Fonte: Base Digital GeoMINAS / Prodemge, 1996 3 - Presença de Substâncias Tóxicas Dados de qualidade das águas: 2019 - IGAM Execução: IGAM/2020 (As; CN-; Pb; Cu_{diss}; Zn; Cr; Cd; Fenóis Totais; Hg) 19°0'0"S 44°30'0"W 44°0'0"W

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	IMITE LEGAL
Bacia	Circunscrição							dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	uas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		Т		ores 201			Parâmetros indicativos de:	
- marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego Caeté	SC03	CAETÉ	26,9	28,1	ALTA	ALTA	64,9	66,1		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre, Fenóis totais.
		Córrego Clemente ou Córrego do Barreiro	BV081	BELO HORIZONTE	74,1	72	*	*	49,1	48,8	•••	×				
		Córrego da Corrente	BV157	LASSANCE	76,2	**	BAIXA	**	49,2	**	×		×	*	*	*
		Córrego da Mina	AV320	RAPOSOS	51,6	53,7	ALTA	ALTA	53,3	50,8	·••	(3)	\odot	Escherichia coli.		Arsênio total, Cádmio total, Cianeto Livre, Cobre dissolvido, Zinco total.
Rio São	SF5 - Rio das	Córrego do Cardoso	AV300	NOVA LIMA	49,9	48,5	MÉDIA	MÉDIA	55,8	58,9				Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
Francisco	Velhas	Córrego do Diogo	SC25	SETE LAGOAS	31,8	39,1	ALTA	ALTA	66,1	64	••	\odot	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Fenóis totais.
		Córrego do Galinha	BV070	SABARÁ	69,2	72,4	BAIXA	BAIXA	48,8	50,2	\odot	\odot				
		Córrego do Vilela	BV042	RIO ACIMA	**	69,5	**	ALTA	**	52,1	×	(3)	×	Escherichia coli.		Arsênio total.
		Córrego Matadouro	SC39	CORINTO	53,1	57,4	BAIXA	MÉDIA	61,2	56,2		(3)	\odot		Fósforo total, Nitrogênio amoniacal total.	
		Córrego Moleque	AV120	ITABIRITO	73,6	77,2	BAIXA	BAIXA	49,4	49		(<u>C</u>)				
		Lagoa dos Ingleses ou Represa Lagoa Grande	AV160E	NOVA LIMA	89,3	83,3	BAIXA	BAIXA	51,5	51,1		\odot				
		Represa da Codorna	AV180E	NOVA LIMA	87,5	81,6	BAIXA	BAIXA	53,9	55,3	<u>••</u>	\odot	•••		Fósforo total.	

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						s dos in		_			omparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		ET		lores 201			Parâmetros indicativos de:	
, and the second					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Água Suja	BV062	NOVA LIMA	40,2	42,4	ALTA	ALTA	59,4	61,7	•••		••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Arsênio total.
		Ribeirão Areias ou	SC12	RIBEIRÃO DAS NEVES	69,5	67	BAIXA	BAIXA	53,2	55,9		\odot	•••	Escherichia coli.	Fósforo total.	
		Ribeirão das Areias	SC13	RIBEIRÃO DAS NEVES	44,5	45	ALTA	ALTA	61,6	59,7		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão Arrudas	BV155	SABARÁ	29,7	29,6	ALTA	ALTA	63,9	62,8		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão Carioca	AV060	ITABIRITO	70,4	76,4	BAIXA	BAIXA	49,4	50,4		\odot				
		Ribeirão Cortesia	BV041	RIO ACIMA	70,4	60,5	MÉDIA	BAIXA	50,9	50,6		\odot	•••	Escherichia coli.		
		Ribeirão Cotovelo	BV158	LASSANCE	71,7	64	BAIXA	BAIXA	52,8	48,8		\odot	\odot			
Rio São Francisco	SF5 - Rio das Velhas	Ribeirão da Corrente	BV159	VÁRZEA DA PALMA	77,2	78,5	BAIXA	MÉDIA	52,1	52,1		(3)				Cianeto Livre.
			SC23	PEDRO LEOPOLDO	41,6	36,8	MÉDIA	ALTA	64,3	64,9		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Fenóis totais.
			SC22	MATOZINHOS	56,7	59,6	BAIXA	BAIXA	51,2	52,1		\odot		Escherichia coli.		
		Ribeirão da Mata	SC21	PEDRO LEOPOLDO	45,6	44,9	ALTA	ALTA	64,4	67,6		(i)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			BV130	VESPASIANO	40,8	44,5	ALTA	ALTA	64,7	65,5		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			SC17	VESPASIANO	38,7	39	ALTA	ALTA	67,7	66,6		(3)	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	

								IN	IDICAD	ORES
Bacia	Circunscrição				Re	sultado	s dos inc	dicadore	s em 20	19
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	ĮΑ	C	T	IE	T
niurogranica	niurografica				2018	2019	2018	2019	2018	2019
		Ribeirão da Onça	BV144	CORDISBURGO	74,7	73	BAIXA	BAIXA	55,5	52,6

;				
	I	Co	mparaç	ão
		Indicad	ores 201	8/2019
9		IQA	СТ	IET
6			(<u>()</u>	

]	PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL										
	Mapa do Pa	norama de Qualidade das Águ	as em 2019										
		Parâmetros indicativos de:											
	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas										
٦	Parâmetros indicativos de:												

								II	NDICAD	ORES	_			PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore				omparaç		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		Т		lores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão da Prata	AV340	RAPOSOS	54	51,5	ALTA	BAIXA	53	54,3		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
		Ribeirão das	SC19	PEDRO LEOPOLDO	44,4	41,1	ALTA	ALTA	69,3	71,4		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Neves	BV160	PEDRO LEOPOLDO	40,3	39	ALTA	ALTA	68,7	69,4		<u>©</u>	(;)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão do	SC27	GOUVEIA	58,9	54,6	ALTA	BAIXA	50,4	53		\odot		Escherichia coli.	Fósforo total.	
		Chiqueiro	SC28	GOUVEIA	70,8	59,3	MÉDIA	BAIXA	50,6	53,3		(3)	(3)	Escherichia coli.		Cobre dissolvido.
Rio São Francisco	SF5 - Rio das Velhas	Ribeirão do Matadouro	SC26	SETE LAGOAS	27,4	30,2	ALTA	ALTA	76,3	67,7		(3)	(i)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	Fenóis totais.
		Ribeirão do Onça	BV154	SANTA LUZIA	29,6	33,9	ALTA	ALTA	69,1	71,4		<u>©</u>		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribell ao do Oliça	SC10	SANTA LUZIA	40,8	42,9	ALTA	ALTA	70,3	72,6		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Ribeirão do Silva ou Ribeirão Mata Porcos	AV050	ITABIRITO	71,7	72,1	BAIXA	BAIXA	50,3	49	•••	(3)	•••	Escherichia coli.		
		Ribeirão dos Macacos (SF5)	AV250	NOVA LIMA	62	65,8	BAIXA	BAIXA	52,1	50,6		\odot	\odot	Escherichia coli.		
		Ribeirão Funil	AV007	OURO PRETO	59,3	64,6	BAIXA	ALTA	49,4	48,8		<u>©</u>	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Nitrogênio amoniacal total.	

								II	NDICAD	ORES				PARÂMETRO	OS QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						os dos in					omparaç		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		Т		ores 201			Parâmetros indicativos de:	
	J				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão Isidoro	BV085	BELO HORIZONTE	28,4	34,9	ALTA	ALTA	69,3	66,8	•••	(3)	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			SC24	PRUDENTE DE MORAIS	34,6	35,8	ALTA	ALTA	61,5	60,3	•••	(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cádmio total, Chumbo total, Cianeto Livre.
		Ribeirão Jequitibá	BV140	JEQUITIBÁ	56,7	54,9	BAIXA	MÉDIA	58,3	58,8	<u>···</u>	(3)	•••		Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	
		Ribeirão Mata Porcos	AV070	ITABIRITO	73,1	76,6	MÉDIA	BAIXA	51,6	52,1		\odot				
		Ribeirão Poderoso	SC14	SANTA LUZIA	33	35,6	ALTA	ALTA	72,4	75,5	•••	(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cianeto Livre, Fenóis totais.
		Ribeirão Sabará	BV076	SABARÁ	45,5	43,9	BAIXA	BAIXA	58,6	60	<u>••</u>	\odot	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
Rio São Francisco	SF5 - Rio das Velhas	Ribeirão Santo Antônio (SF5)	BV161	INIMUTABA	48,8	52,3	ALTA	ALTA	56,9	58,6	\odot	(<u>(3)</u>	•••		Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
		Rio Bicudo	BV147	CORINTO	77,6	74,6	BAIXA	BAIXA	53,4	51,8		\odot	\odot			
		Bio Cin 4	BV010	SANTANA DO RIACHO	73,8	74,8	*	*	50,6	50,1		×	•••			
		Rio Cipó	BV162	PRESIDENTE JUSCELINO	75,3	73,3	BAIXA	BAIXA	49,9	49,7		\odot	•••	Escherichia coli.		
		Rio Curumataí	SC33	AUGUSTO DE LIMA	75,1	69,4	BAIXA	BAIXA	49,4	50		\odot	•••			
		Rio do Peixe (SF5)	AV200	NOVA LIMA	81,8	81,6	BAIXA	BAIXA	51,6	50,8	<u>••</u>	\odot	•••			
		Die Hebisite	AV080	ITABIRITO	68,8	75,3	BAIXA	BAIXA	52,3	52,3	\odot	\odot	•••			
		Rio Itabirito	BV035	ITABIRITO	54,8	50,2	BAIXA	BAIXA	53,6	56,8		\odot	•••	Escherichia coli.	Fósforo total.	Chumbo total.
		Rio Jaboticatubas	BV136	JABOTICATUBAS	75,7	78,9	BAIXA	ALTA	49,4	49,4		\odot	•••	Escherichia coli.		Cromo total.

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						s dos in	dicadore		_	Co	omparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QA	•	CT	IE	T	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Maracujá	AV020	ITABIRITO	58	54,9	BAIXA	BAIXA	52,4	53,9		(:)		Escherichia coli.	Fósforo total.	
		Rio Paraúna	BV143	PRESIDENTE JUSCELINO	80,2	77,4	BAIXA	BAIXA	49,6	50,5		(i)		Escherichia coli.	Fósforo total.	
		NIO Parauria	SC30	PRESIDENTE JUSCELINO	60,8	66,2	BAIXA	BAIXA	51,1	49,6		\odot		Escherichia coli.		
		Rio Pardo Pequeno	BV145	MONJOLOS	71	80,2	ALTA	BAIXA	50,3	51,4		(<u>·</u>)	•••		Fósforo total.	
		Rio Taquaraçu	BV135	JABOTICATUBAS, SANTA LUZIA	75	74,8	BAIXA	BAIXA	52,8	49,3		\odot	\odot	Escherichia coli.		
Rio São Francisco	SF5 - Rio das Velhas	Rio Vermelho (SF5)	BV133	NOVA UNIÃO	58,3	60,5	BAIXA	BAIXA	51,7	51,5		(<u>:</u>)		Escherichia coli.		
			BV001	OURO PRETO	77,7	80,9	*	*	48,8	49,1		×				
			AV010	OURO PRETO	71,2	72,4	BAIXA	BAIXA	49,1	49,1		\odot		Escherichia coli.		
		Rio das Velhas	BV013	ITABIRITO	70,2	64,8	BAIXA	BAIXA	52,8	55,9		\odot		Escherichia coli.	Fósforo total.	
			AV210	RIO ACIMA	63,5	53,7	BAIXA	BAIXA	52,4	55,5		\odot		Escherichia coli.	Fósforo total.	Cianeto Livre.
			BV037	RIO ACIMA	59,2	55,4	BAIXA	BAIXA	54,6	56,3		(<u>:</u>)		Escherichia coli.	Fósforo total.	

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição							dicadore				mparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		СТ		ET		ores 201			Parâmetros indicativos de:	
.					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			BV139	RIO ACIMA	55,3	55,6	MÉDIA	MÉDIA	53	54,1				Escherichia coli.	Fósforo total.	Chumbo total.
			BV063	NOVA LIMA, RAPOSOS	58,9	51,4	BAIXA	MÉDIA	52,8	56,1		(3)		Escherichia coli.	Fósforo total.	Arsênio total.
			BV067	SABARÁ	56,8	62	BAIXA	BAIXA	56,4	53,7		(<u>i</u>)		Escherichia coli.	Fósforo total.	
			BV080	SABARÁ	50,2	50,7	BAIXA	BAIXA	56,8	55,1		(<u>i</u>)		Escherichia coli.		
Rio São Francisco	SF5 - Rio das Velhas	Rio das Velhas	BV083	SABARÁ	35,1	42,1	BAIXA	BAIXA	64,3	60,6		(<u>i</u>)	(i)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
			BV105	SANTA LUZIA	33,4	32,1	MÉDIA	ALTA	65,9	66,2		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Cobre dissolvido.
			SC16	SANTA LUZIA	35,4	38,2	MÉDIA	ALTA	67,7	71,7		(3)		Escherichia coli.	Fósforo total, Nitrogênio amoniacal total.	
			BV153	SANTA LUZIA	35,6	42,6	MÉDIA	BAIXA	67,3	64,6		(<u>C</u>)	\odot	Escherichia coli.		

									NDICAD					PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição						s dos inc		_			omparaç		Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		ET		ores 201			Parâmetros indicativos de:	1
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			BV138	LAGOA SANTA	42,2	54,5	ALTA	ALTA	70,7	73,1	\odot				Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			BV137	LAGOA SANTA	41,5	51,9	MÉDIA	ALTA	69	71,1	<u></u>				Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			BV156	BALDIM	46,5	44,4	ALTA	ALTA	68,9	70,9	•••	(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	Arsênio total, Chumbo total.
			BV141	SANTANA DE PIRAPAMA	44,2	44,1	ALTA	ALTA	71,9	73,9		<u>©</u>	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	Arsênio total, Chumbo total, Cianeto Livre, Zinco total.
Rio São Francisco	SF5 - Rio das Velhas	Rio das Velhas	BV150	SANTO HIPÓLITO	56	54,8	ALTA	ALTA	71,6	71,5		<u>(3)</u>	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Arsênio total, Chumbo total.
			BV152	SANTO HIPÓLITO	58,5	53,9	ALTA	ALTA	70,6	71		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato.	Arsênio total, Chumbo total, Fenóis totais.
			BV148	VÁRZEA DA PALMA	57,3	60,7	ALTA	ALTA	68,4	67,6			(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Arsênio total, Chumbo total.
			BV151	LASSANCE	64,1	66,1	ALTA	ALTA	68,8	69,1		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Arsênio total, Chumbo total, Cianeto Livre.
			BV142	INIMUTABA, PRESIDENTE JUSCELINO	56,8	50,3	ALTA	ALTA	75,9	73,6		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato.	Arsênio total.
			BV146	AUGUSTO DE LIMA, CORINTO	61,5	59,6	ALTA	ALTA	69,1	70,2		(3)	(3)	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Arsênio total, Chumbo total.
			BV149	VÁRZEA DA PALMA	61	64,9	ALTA	ALTA	67,2	63,5		(<u>;</u>)	\odot		Demanda Bioquímica de Oxigênio, Fósforo total.	Arsênio total, Chumbo total.

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

★ Não foi possível fazer a comparação com o ano anterior

* CT não calculado, por não haver limite para Classe Especial

** Ponto sem resultados

							11	NDICADORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Resultado	os dos ir	ndicadore	s em 2019	Co	mparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IQA		СТ	IET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
niui ografica	niurogranica				2018 2019	2018	2019	2018 2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas

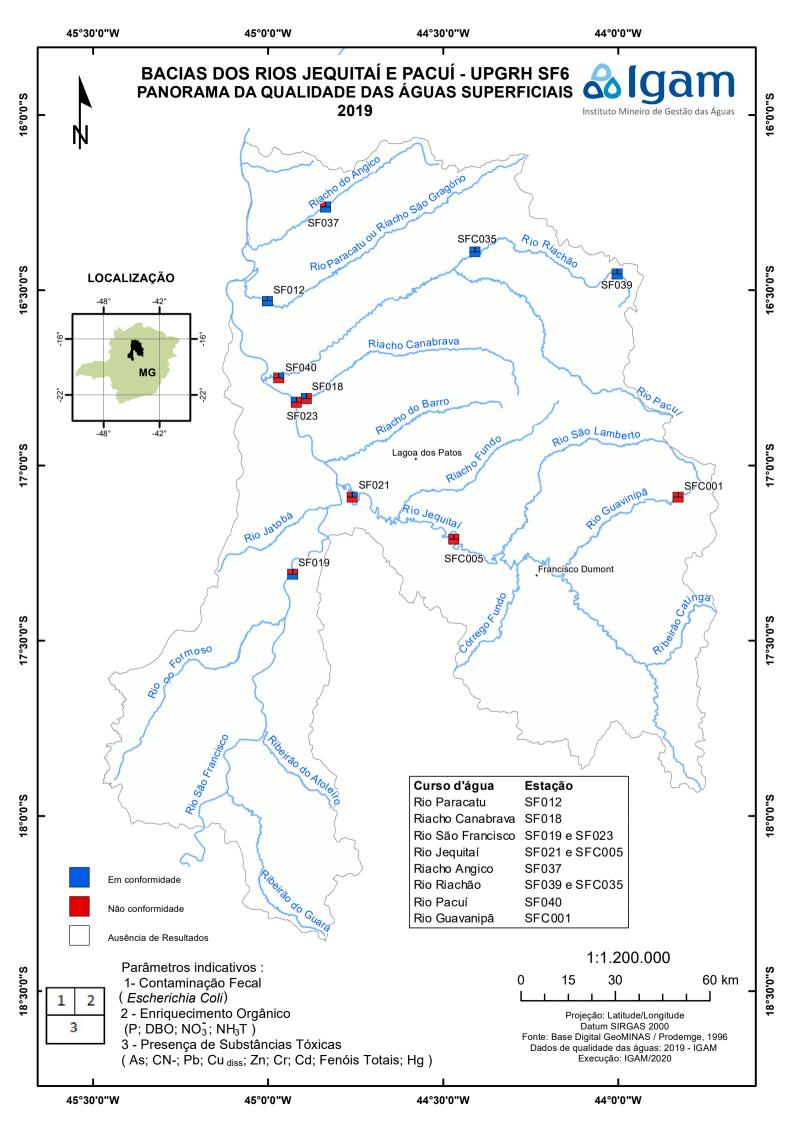


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição				Re	esultado	s dos in	dicadore	es em 20	19	Co	mparaçã	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		Т	Indicad	ores 201	8/2019		Parâmetros indicativos de:	_
riidi Ografica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Riacho Canabrava	SF018	IBIAÍ	62,6	58,2	BAIXA	ALTA	62,7	58,9		(3)	\odot		Demanda Bioquímica de Oxigênio.	Arsênio total, Chumbo total.
		Riacho do Angico	SF037	UBAÍ	51,8	53	BAIXA	BAIXA	54,1	52,3		(<u>(;</u>	<u></u>	Escherichia coli.		
		Rio Guavanipã	SFC001	BOCAIÚVA	24,7	28,4	ALTA	ALTA	59,2	59,4	\odot	(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Chumbo total, Cianeto Livre, Cobre dissolvido, Fenóis totais.
			SFC005	JEQUITAÍ	79,2	63,8	ALTA	MÉDIA	49,8	53,8		\odot		Escherichia coli.	Fósforo total.	Chumbo total.
	SF6 - Rios	Rio Jequitaí	SF021	LAGOA DOS PATOS, VÁRZEA DA PALMA	77,3	66,8	BAIXA	ALTA	50,8	53,3	(3)	(3)	(3)	Escherichia coli.		Chumbo total.
Rio São Francisco	Jequitaí e Pacuí	Rio Pacuí	SF040	IBIAÍ, PONTO CHIQUE	69,4	58,5	BAIXA	ALTA	50	50,9		(3)		Escherichia coli.		Chumbo total.
		Rio Paracatu	SF012	PONTO CHIQUE	70,8	76,9	BAIXA	BAIXA	50,3	53,6		\odot	(3)			
			SF039	MONTES CLAROS	70,8	71,6	BAIXA	BAIXA	49,4	49,6		(<u>C</u>)				
		Rio Riachão	SFC035	BRASÍLIA DE MINAS, CORAÇÃO DE JESUS	69,1	64,6	BAIXA	BAIXA	49,8	51,7	•••	\odot				
		Rio São Francisco	SF019	PIRAPORA	59,4	62,2	BAIXA	BAIXA	54,2	55,6		\odot	<u></u>	Escherichia coli.	Fósforo total.	
		(SF)	SF023	IBIAÍ	68,3	66	MÉDIA	MÉDIA	56,3	57,4			•••		Fósforo total.	Arsênio total, Cádmio total.

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								eram ao II	IDICAD					PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				Re	esultado	os dos in	dicadore	s em 20	19	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		CT		T	Indicad	lores 201			Parâmetros indicativos de:	
marogranica	Thurogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Córrego Rico	PTE023	PARACATU	57,2	56,9	ALTA	ALTA	53	53,3				Escherichia coli.		Arsênio total.
		corrego nico	PT005	PARACATU	52,8	58,6	ALTA	ALTA	65,9	58,2		(3)	\odot	Escherichia coli.	Fósforo total, Nitrato.	Arsênio total.
		Ribeirão Arrenegado	PTE011	GUARDA-MOR	68,4	65,6	BAIXA	BAIXA	49,8	52,1	<u>••</u>	(i)	(3)	Escherichia coli.		
		Ribeirão Cana Brava	PT004	UNAÍ	64,3	67,9	BAIXA	BAIXA	50,9	51,5		(<u>(;)</u>		Escherichia coli.	Fósforo total.	Cobre dissolvido.
		Ribeirão Entre Ribeiros	PTE031	PARACATU, UNAÍ	74,5	76,1	BAIXA	BAIXA	49,6	49,1		\odot				
		Ribeirão Escurinho	PTE013	PARACATU	70,7	67,9	BAIXA	BAIXA	49,6	51,4		\odot			Fósforo total.	
		Ribeirão Roncador	PT002	UNAÍ	58,3	69,4	BAIXA	BAIXA	52,1	49,5		\odot	\odot	Escherichia coli.		
Rio São	SF7 - Rio	Ribeirão Santa Fé	PTE037	SANTA FÉ DE MINAS	71,3	71,2	BAIXA	MÉDIA	53,8	56,1		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.
Francisco	Paracatu	Ribeirão São	PTE025	PARACATU	71,6	70,5	BAIXA	BAIXA	49,1	49,7		\odot		Escherichia coli.		
		Pedro (SF7)	PTE029	PARACATU	69,8	73,8	MÉDIA	BAIXA	51,1	49,9	\odot	\odot				
		Rio Caatinga	PT010	JOÃO PINHEIRO	67,6	63,8	BAIXA	ALTA	51,2	54,7		(3)	(3)	Escherichia coli.	Fósforo total.	Chumbo total, Cobre dissolvido.
		Rio Claro	SFH10	GUARDA-MOR	71,5	68,6	BAIXA	BAIXA	49,1	49,1		\odot		Escherichia coli.		
		NIO CIATO	PTE009	GUARDA-MOR, VAZANTE	70,1	64,9	BAIXA	BAIXA	48,8	51,6		(<u>:</u>)		Escherichia coli.		
			PTE001	PRESIDENTE OLEGÁRIO	60,7	67,3	ALTA	BAIXA	51,7	51,7		\odot		Escherichia coli.		
		Rio da Prata (SF7)	PT001	JOÃO PINHEIRO, LAGOA GRANDE	67,4	65,8	BAIXA	ALTA	50,8	54,1		(3)	(3)	Escherichia coli.		Chumbo total.
			PTE017	JOÃO PINHEIRO, LAGOA GRANDE	56,6	59,9	BAIXA	BAIXA	49,8	57,3		(;)	(3)		Fósforo total.	

								11	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						os dos in	dicadore			Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		T		ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:	
· ····································	· · · · · · · · · · · · · · · · · · ·				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio do Sono	PTE019	JOÃO PINHEIRO	68,4	72,2	BAIXA	BAIXA	49,8	50,9	\odot	\odot	•••	Escherichia coli.		
		KIO UO SONO	PT011	BURITIZEIRO, JOÃO PINHEIRO	69,3	69	BAIXA	BAIXA	50,3	54,2		(i)	(3)	Escherichia coli.	Fósforo total.	
		Rio Escuro	PTE015	PARACATU, VAZANTE	71,2	77,6	BAIXA	BAIXA	52,1	49,1		\odot	\odot			
			SFH24	PLANALTINA (GO)	69	67,8	BAIXA	BAIXA	50,3	52,5		\odot			Fósforo total.	
Rio São	SF7 - Rio	Rio Preto (SF7)	PTE027	UNAÍ	69,3	69	BAIXA	ALTA	50,1	50,7		(3)		Escherichia coli.		Chumbo total.
Francisco	Paracatu		PT007	UNAÍ	66,5	69,2	BAIXA	BAIXA	51	50,5		\odot	•••	Escherichia coli.	Fósforo total.	
			PTE003	VAZANTE	47,4	49	BAIXA	MÉDIA	56,1	55,3		(3)	•••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	Chumbo total.
		Rio Santa Catarina	PTE005	LAGAMAR, VAZANTE	74,3	66,2	BAIXA	ALTA	49,8	52,7				Escherichia coli.		Cádmio total, Chumbo total, Zinco total.
		Rio Santo Antônio (SF7)	PTE021	JOÃO PINHEIRO	66,1	68,8	MÉDIA	BAIXA	50,8	52		\odot	(3)	Escherichia coli.	Fósforo total.	
		Rio Verde (SF7)	PTE035	BRASILÂNDIA DE MINAS, JOÃO PINHEIRO	75,2	74,5	BAIXA	BAIXA	52,2	49,8		\odot	\odot	Escherichia coli.		

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						os dos in		-			mparaç		Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		ĒΤ		ores 201	_		Parâmetros indicativos de:	
	· · · · · · · · · · · · · · · · · · ·				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			PTE007	LAGAMAR, LAGOA GRANDE	63,1	59,4	BAIXA	ALTA	51,9	54		(3)	(3)	Escherichia coli.	Fósforo total.	Cianeto Livre.
			PT003	LAGOA GRANDE, PARACATU	69,4	73,2	MÉDIA	BAIXA	51,9	50,1	\odot	③				
			SFH11	PARACATU	68,7	67,1	BAIXA	BAIXA	52,7	54,9		(<u>()</u>		Escherichia coli.		
Rio São Francisco	SF7 - Rio Paracatu	Rio Paracatu	PTE033	JOÃO PINHEIRO, PARACATU	66,4	68	BAIXA	BAIXA	54,6	51,8		③	()			Chumbo total.
			PT009	BRASILÂNDIA DE MINAS	69,4	69,9	BAIXA	BAIXA	53,3	53,1		(<u>i</u>)		Escherichia coli.	Fósforo total.	
			SFH13	BRASILÂNDIA DE MINAS	68,8	70,4	BAIXA	BAIXA	52,9	53,2	\odot	(<u>i</u>)			Fósforo total.	
			PT013	BURITIZEIRO, SANTA FÉ DE MINAS	70,9	72,6	BAIXA	BAIXA	53,3	56,3	••	\odot	••		Fósforo total.	

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

46°0'0"W

45°0'0"W

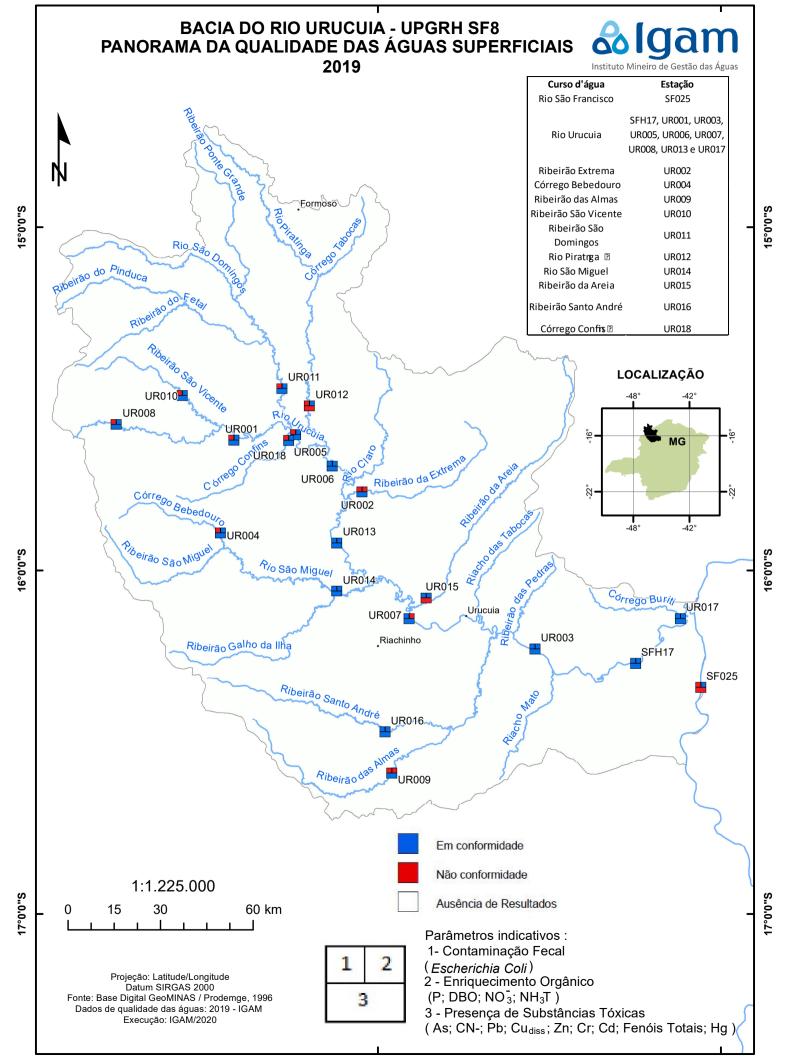


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES			PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição Hidrográfica	Corpo de água	Estação	Municípios	Re	esultado	s dos in	dicadore	s em 20	19	Comparação			Mapa do Pa	norama de Qualidade das Águ	as em 2019
Hidrográfica					IQA			СТ		IET		ores 201	8/2019	Parâmetros indicativos de:		
· · · · · · · · · · · · · · · · · · ·					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
	SF8 - Rio Urucuia	Córrego Bebedouro	UR004	UNAÍ, URUANA DE MINAS	69	67,4	BAIXA	BAIXA	54,1	49,8		\odot	\odot	Escherichia coli.		
		Córrego Confins	UR018	BURITIS	62,7	60,8	BAIXA	BAIXA	50,5	51,3		(:)		Escherichia coli.		
		Ribeirão da Areia	UR015	ARINOS, URUCUIA	62,4	71	BAIXA	BAIXA	53,5	52,6	\odot	(:)				Zinco total.
		Ribeirão da Extrema	UR002	ARINOS	63,6	61,7	BAIXA	BAIXA	55,3	53,5		(<u>(;</u>		Escherichia coli.	Fósforo total.	
		Ribeirão das Almas	UR009	BONFINÓPOLIS DE MINAS	50,6	54,3	MÉDIA	BAIXA	53,7	52,2		(<u>(;</u>		Escherichia coli.	Fósforo total.	
Rio São Francisco		Ribeirão Santo André	UR016	BONFINÓPOLIS DE MINAS	58,8	74,4	ALTA	BAIXA	55,3	51,5	\odot	(<u>·</u>)	(<u>()</u>			
		Ribeirão São Domingos ou Rio São Domingos	UR011	ARINOS, BURITIS	65,2	67,9	BAIXA	BAIXA	50,3	50,5	••	\odot		Escherichia coli.		
		Ribeirão São Vicente	UR010	BURITIS	70,8	73,8	BAIXA	BAIXA	49,6	50,6		(<u>(;</u>		Escherichia coli.		
		Rio Piratinga	UR012	ARINOS	69,8	69,1	BAIXA	BAIXA	51	52,7		(i)	(3)	Escherichia coli.		Chumbo total.
		Rio São Miguel (SF8)	UR014	ARINOS	67,5	72	BAIXA	BAIXA	51	50,5	\odot	\odot				

	INDICADORES									PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL						
Bacia	Circunscrição Hidrográfica	Corpo de água		Municípios	Re	esultado	os dos in	dicadore	s em 20	19	Comparação			Mapa do Panorama de Qualidade das Águas em 2019		
Hidrográfica			Estação		IQA		СТ		IET		Indicadores 2018/2019			Parâmetros indicativos de:		
marogranica					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
	SF8 - Rio Urucuia	Rio Urucuia	UR001	BURITIS	65,4	71,5	MÉDIA	BAIXA	53,7	50	\odot	\odot	\odot	Escherichia coli.		
			UR008	BURITIS	68,9	71,1	BAIXA	BAIXA	51,2	50,1	\odot	(3)		Escherichia coli.		
			UR005	ARINOS	69,4	66,5	BAIXA	BAIXA	50,3	51,3		(<u>i</u>)		Escherichia coli.		
			UR007	RIACHINHO, URUCUIA	70,6	75,7	BAIXA	BAIXA	51,3	52,1		③			Fósforo total.	
Rio São			UR013	ARINOS	65	76,6	BAIXA	BAIXA	54	50,3	\odot	③	\odot			
Francisco			UR006	ARINOS	68,3	71,3	BAIXA	BAIXA	50,9	50,9	\odot	(<u>i</u>)				
			SFH17	SÃO ROMÃO	66	72,3	BAIXA	BAIXA	53,3	51,3	\odot	(<u>i</u>)	\odot			
			UR003	URUCUIA	66,7	71,7	BAIXA	BAIXA	50,9	51	\odot	③				
			UR017	PINTÓPOLIS, SÃO ROMÃO	70,2	76,2	BAIXA	BAIXA	52,2	51,5		(<u>()</u>	\odot			
		Rio São Francisco (SF)	SF025	SÃO ROMÃO	69,7	70,6	BAIXA	BAIXA	59,2	53,5	\odot	\odot		Escherichia coli.		Zinco total.

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

⁻⁻⁻ Todos os resultados dos indicativos correspondentes estiveram em conformidade

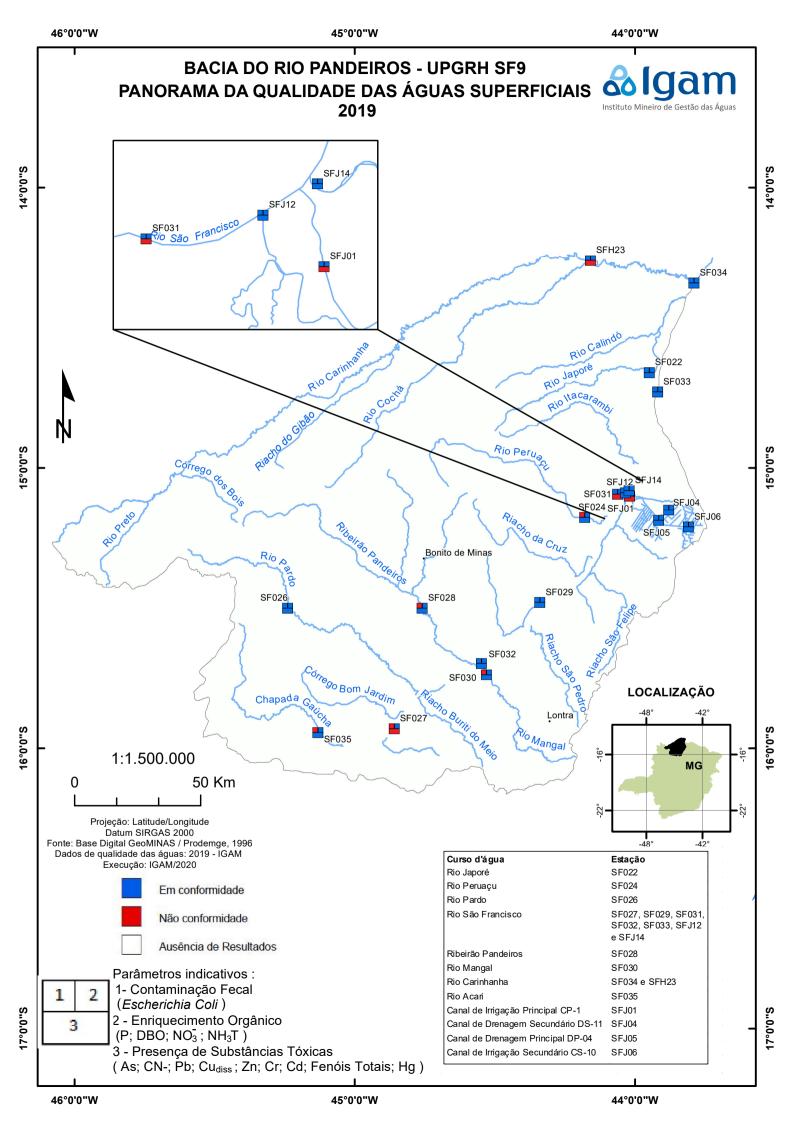


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

								II	NDICAD	ORES			PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição Hidrográfica	Corpo de água	Estação	Municípios	Re	esultado	s dos in	dicadore	s em 20	19	Co	mparaçã	ăо	Mapa do Panorama de Qualidade das Águas em 2019		
Hidrográfica					IQA		СТ		II	IET		Indicadores 2018/2019		Parâmetros indicativos de:		
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
	SF9 - Rios Pandeiro e Calindó	Canal de Drenagem Principal DP-04	SFJ05	JAÍBA	77,2	80,8	BAIXA	BAIXA	54	50,2		\odot	\odot			
		Canal de Drenagem Secundária DS-11	SFJ04	JAÍBA	82	82	MÉDIA	BAIXA	54,3	53,7		\odot				
		Canal de Irrigação Principal CP-1	SFJ01	JAÍBA	73,4	74,5	BAIXA	BAIXA	58,9	53,1	••	\odot	•••			Cobre dissolvido.
Rio São		Canal de Irrigação Secundário CS-10	SFJ06	JAÍBA	81,1	84,6	BAIXA	BAIXA	52,6	50,8	•••	(3)	(3)			
Francisco		Ribeirão Pandeiros	SF028	JANUÁRIA	73,2	70,9	BAIXA	BAIXA	49,1	49,5		\odot		Escherichia coli.		
		Rio Acari	SF035	PINTÓPOLIS, SÃO FRANCISCO	63	69,2	BAIXA	BAIXA	52,8	55,6		(<u>·</u>)		Escherichia coli.		
		Rio Carinhanha	SFH23	JUVENÍLIA	73,4	78	BAIXA	MÉDIA	49,5	49,1						Cobre dissolvido.
		Rio Carinhanha	SF034	JUVENÍLIA	72	76,5	BAIXA	BAIXA	51,3	52,1		(<u>;</u>	(3)			
		Rio Japoré	SF022	MANGA	73,4	73,1	BAIXA	BAIXA	49,9	50,7		\odot	<u></u>			
		Rio Mangal	SF030	PEDRAS DE MARIA DA CRUZ	44,9	45,8	BAIXA	BAIXA	59,8	52,5		\odot	\odot	Escherichia coli.		

								II	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição				_			dicadore		_		mparaç		Mapa do Pa	norama de Qualidade das Águ	ias em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QΑ		СТ		Т		ores 201			Parâmetros indicativos de:	
					2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Rio Pardo (SF9)	SF026	CHAPADA GAÚCHA, JANUÁRIA	71,5	73,2	BAIXA	BAIXA	49,1	51,1		\odot				
		Rio Peruaçu	SF024	JANUÁRIA	71,6	66,5	MÉDIA	BAIXA	49,1	49,9		(<u>i</u>)		Escherichia coli.		
		Rio São Francisco (SF)	SF029	JANUÁRIA	66,4	71,1	BAIXA	BAIXA	59,4	54,8	\odot	(<u>i</u>)	(<u>:</u>)			
	SF9 - Rios	Rio São Francisco (SF)	SF027	SÃO FRANCISCO	70,6	69,6	BAIXA	BAIXA	55,8	53		(<u>:</u>)	•••	Escherichia coli.		Zinco total.
Rio São Francisco	Pandeiro e Calindó	Rio São Francisco (SF)	SF032	JANUÁRIA	70,5	70,6	BAIXA	BAIXA	57,3	58		(3)				
		Rio São Francisco (SF)	SF031	ITACARAMBI	71,4	71,8	BAIXA	ALTA	56,5	53,8		(3)				Cobre dissolvido.
		Rio São Francisco (SF)	SFJ12	ITACARAMBI, JAÍBA	69,2	73,4	BAIXA	BAIXA	59,9	53,1	\odot	(<u>:</u>)	\odot			
		Rio São Francisco (SF)	SFJ14	JAÍBA	72,2	74,8	BAIXA	BAIXA	57,4	53,1		③				
		Rio São Francisco (SF)	SF033	MANGA	75,4	73,9	ALTA	BAIXA	55,5	53,5		\odot	•••			

O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade

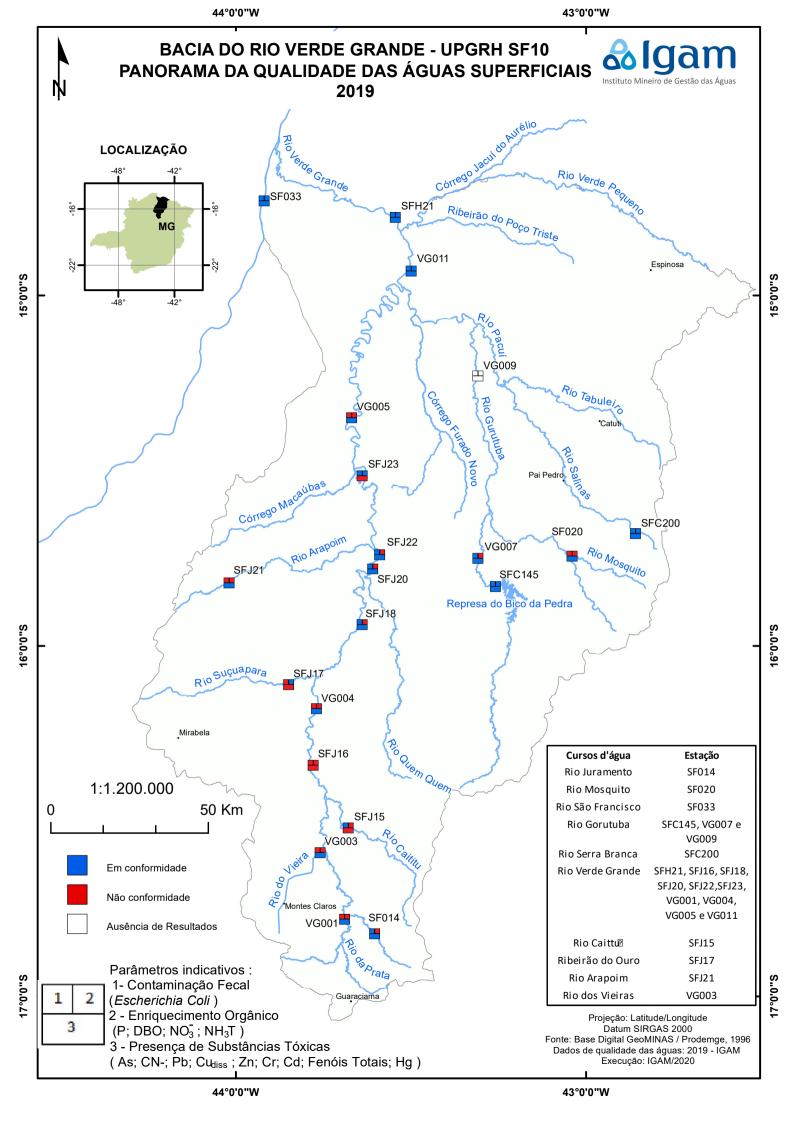


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

									NDICAD					PARÂMETRO	S QUE NÃO ATENDERAM O LI	MITE LEGAL
Bacia	Circunscrição						s dos in	dicadore			Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	10	QΑ	C	T	II	ET	Indicad	lores 201	18/2019		Parâmetros indicativos de:	
Thurogranica	Tildrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
		Ribeirão do Ouro	SFJ17	MONTES CLAROS, SÃO JOÃO DA PONTE	58,2	59,7	BAIXA	ALTA	51,1	51,8				Escherichia coli.		Chumbo total, Cobre dissolvido.
		Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	MONTES CLAROS	38,7	31	ALTA	ALTA	68,5	64,7		8		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	
		Rio Arapoim	SFJ21	SÃO JOÃO DA PONTE	67,8	67,4	MÉDIA	BAIXA	52,4	51,6		\odot	\odot	Escherichia coli.	Fósforo total.	
		Rio Caititu	SFJ15	FRANCISCO SÁ	60,8	50,2	BAIXA	MÉDIA	59,7	59,6		(3)			Fósforo total.	Chumbo total, Cobre dissolvido.
Rio São	SF10 - Afluentes do		SFC145	JANAÚBA	85,1	79,8	MÉDIA	BAIXA	51	52,8		\odot				
Francisco	Rio Verde Grande	Rio Gorutuba	VG007	JANAÚBA, NOVA PORTEIRINHA	50,9	45,8	ALTA	MÉDIA	59	63,3		\odot			Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	
			VG009	JAÍBA, PAI PEDRO	72,2	*	BAIXA	*	66,9	*	×	×	×	*	*	*
		Rio Juramento	SF014	JURAMENTO	65,9	69,7	ALTA	BAIXA	51,7	52,5		\odot	(3)		Fósforo total.	
		Rio Mosquito (SF10)	O Mosquito SF020 PORTEIRINHA 52,1 45,7 ALTA ALTA 71,6 78 SF020 Scherichia coli. Oxigêni		Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.											
		Rio Serra Branca	SFC200	PORTEIRINHA	81,6	79,4	BAIXA	BAIXA	48,8	48,8		\odot				

								II.	NDICAD	ORES				PARÂMETRO	S QUE NÃO ATENDERAM O L	MITE LEGAL
Bacia	Circunscrição						s dos in			_	Co	omparaç	ão	Mapa do Pa	norama de Qualidade das Águ	ıas em 2019
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios		QA		T		ET		lores 201	8/2019		Parâmetros indicativos de:	
marogranica	marogranica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas
			SFH21	MATIAS CARDOSO	70,3	79,8	BAIXA	BAIXA	56,3	51,6	•••	\odot	\odot			
			SFJ16	CAPITÃO ENÉAS, MONTES CLAROS	44,1	44,9	ALTA	ALTA	64,9	61,4		(3)		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrogênio amoniacal total.	Chumbo total, Fenóis totais.
			SFJ18	CAPITÃO ENÉAS, SÃO JOÃO DA PONTE	63	59,5	BAIXA	BAIXA	58,1	58,5		\odot			Fósforo total.	
			SFJ20	JANAÚBA, SÃO JOÃO DA PONTE	63,9	70,8	BAIXA	MÉDIA	54,8	59,9	\odot	(3)	(<u>;</u>)		Fósforo total.	
Rio São	SF10 - Afluentes do		SFJ22	JANAÚBA, SÃO JOÃO DA PONTE	64,3	68,2	BAIXA	BAIXA	55,7	56,9		\odot			Fósforo total.	
Francisco	Rio Verde Grande	Rio Verde Grande	SFJ23	VERDELÂNDIA	68,5	68,6	BAIXA	ALTA	57,5	57,2						Fenóis totais.
			VG001	GLAUCILÂNDIA, MONTES CLAROS	54,7	50,2	BAIXA	BAIXA	60,9	58,9		\odot	\odot	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
			VG004	CAPITÃO ENÉAS, MONTES CLAROS	49,1	41,6	ALTA	ALTA	62	61,8	•••	(3)	••	Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total, Nitrato, Nitrogênio amoniacal total.	
			VG005	JAÍBA	53	54,6	BAIXA	BAIXA	55,1	58,3		\odot		Escherichia coli.	Demanda Bioquímica de Oxigênio, Fósforo total.	
			VG011	GAMELEIRAS, MATIAS CARDOSO	67,1	81,6	BAIXA	BAIXA	57,9	53,3		\odot				

② O indicador melhorou ou manteve-se na melhor condição de qualidade

O indicador manteve-se na mesma qualidade da ano anterior

8 O indicador piorou ou manteve-se na pior condição de qualidade

🗶 Não foi possível fazer a comparação com o ano anterior

Ponto sem resultado

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade

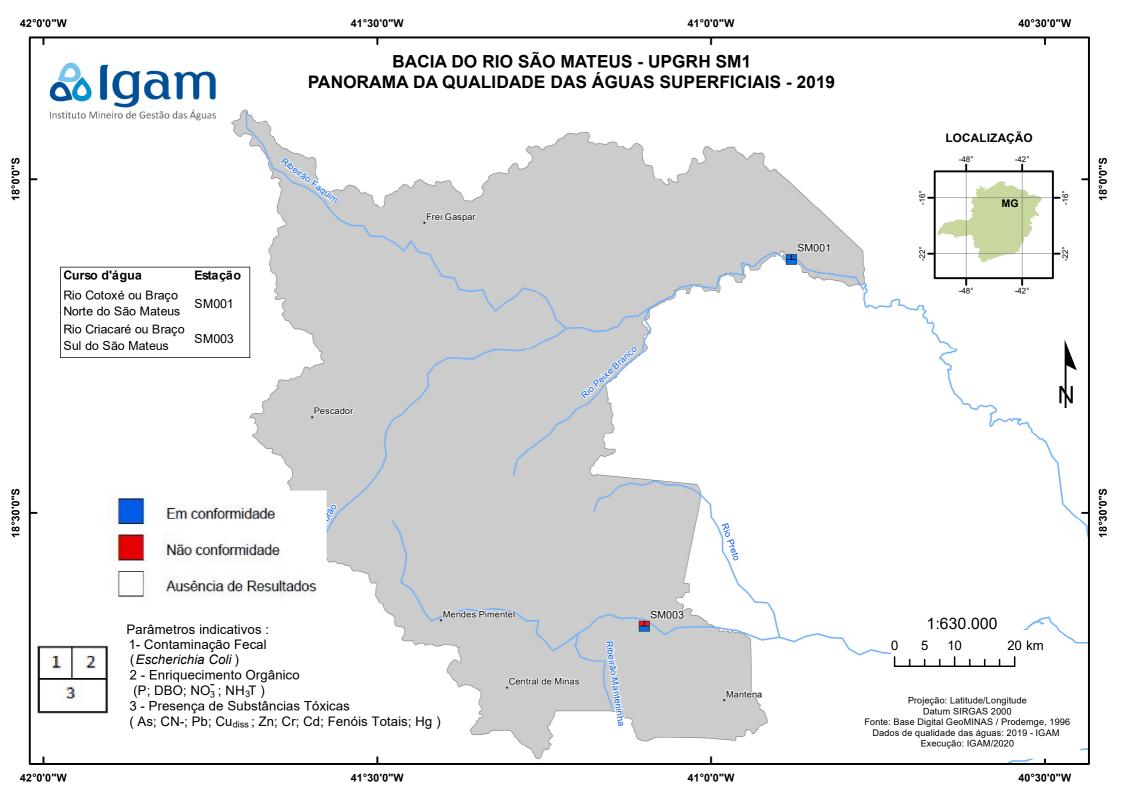


Tabela 16: Síntese comparativa dos resultados da Média do IQA no Período Solicitado de 2018 e 2019 de IQA, CT e IET e os parâmetros indicativos de contaminação: fecal, enriquecimento orgânico e substâncias tóxicas que não atenderam ao limite legal em 2019

					INDICADORES Resultados dos indicadores em 2019 Comparação									PARÂMETROS QUE NÃO ATENDERAM O LIMITE LEGAL			
Bacia	Circunscrição				Re	sultado	s dos inc	dicadore	s em 20)19	Co	mparaçã	ío	Mapa do Pa	norama de Qualidade das Águ	as em 2019	
Hidrográfica	Hidrográfica	Corpo de água	Estação	Municípios	IC	QA	C	T	11	ET	Indicad	ores 201	8/2019		Parâmetros indicativos de:		
Hidrografica	nidrografica nidrografica				2018	2019	2018	2019	2018	2019	IQA	СТ	IET	Contaminação Fecal	Enrriquecimento orgânico	Substâncias tóxicas	
Rio São Mateus	SM1 - Rio São	Rio São Mateus	SM001	ATALÉIA, ECOPORANGA (ES)	73,6	73,5	BAIXA	BAIXA	55	52,5		\odot					
	Mateus	(SM1)	SM003	MANTENA	57,6	56	MÉDIA	BAIXA	52,7	53,2		(;)		Escherichia coli.	Fósforo total.		

\odot	O indicador melhorou ou manteve-se na melhor condição de qualida	de
---------	--	----

O indicador manteve-se na mesma qualidade da ano anterior

--- Todos os resultados dos indicativos correspondentes estiveram em conformidade $\,$

⁸ O indicador piorou ou manteve-se na pior condição de qualidade

APÊNDICE B Valores de concentração, vazão e carga para os parâmetros DBO e fósforo total, para todas as estações de monitoramento em que são realizadas medições simultâneas de qualidade e de quantidad

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF5 - Rio das Velhas	ITABIRITO (MG)	Rio Itabirito	AV080	02/04/2019	3,59	2	25,82	0,02	0,26
SF5 - Rio das Velhas	ITABIRITO (MG)	Rio Itabirito	AV080	09/07/2019	2,78	2	20,05	0,02	0,20
SF5 - Rio das Velhas	RIO ACIMA (MG)	Rio das Velhas	AV210	03/04/2019	18,79	2	135,31	0,1	6,77
SF5 - Rio das Velhas	RIO ACIMA (MG)	Rio das Velhas	AV210	09/10/2019	9,82	2	70,73	0,09	3,18
GD1 - Alto Rio Grande	AIURUOCA (MG)	Rio Aiuruoca	BG004	22/02/2019	11,63	2	83,74	0,03	1,26
GD1 - Alto Rio Grande	AIURUOCA (MG)	Rio Aiuruoca	BG004	09/08/2019	5,20	2	37,40	0,08	1,50
GD1 - Alto Rio Grande	ALAGOA (MG)	Rio Aiuruoca	BG006	22/02/2019	4,27	2	30,76	0,04	0,62
GD1 - Alto Rio Grande	ALAGOA (MG)	Rio Aiuruoca	BG006	09/08/2019	2,70	2	19,45	0,1	0,97
GD2 - Rio das Mortes e Rio Jacaré	LAVRAS (MG), RIBEIRÃO VERMELHO (MG)	Rio Grande	BG019	20/02/2019	275,69	2	1984,94	0,06	59,55
GD2 - Rio das Mortes e Rio Jacaré	LAVRAS (MG), RÌBEIRÃO VERMELHO (MG)	Rio Grande	BG019	06/11/2019	270,06	2	1944,44	0,05	48,61
GD2 - Rio das Mortes e Rio Jacaré	CAMPO BELO (MG), CANA VERDE (MG)	Rio Jacaré	BG021	20/02/2019	93,67	2	674,42	0,07	23,60
GD2 - Rio das Mortes e Rio Jacaré	CAMPO BELO (MG), CANA VERDE (MG)	Rio Jacaré	BG021	06/11/2019	9,93	2	71,51	0,06	2,15
GD4 - Rio Verde	ELÓI MENDES (MG), VARGINHA (MG)	Rio Verde (GD4)	BG037	27/02/2019	66,71	2	480,30	0,07	16,81
GD4 - Rio Verde	ELÓI MENDES (MG), VARGINHA (MG)	Rio Verde (GD4)	BG037	14/08/2019	29,64	2	213,40	0,09	9,60
GD5 - Rio Sapucaí	PARAGUAÇU (MG)	Rio Sapucaí	BG049	27/02/2019	129,60	2	933,09	0,12	55,99
GD5 - Rio Sapucaí	PARAGUAÇU (MG)	Rio Sapucaí	BG049	14/08/2019	88,90	2	640,09	0,09	28,80
GD7 - Afluentes Mineiros do Médio Grande	ALPINÓPOLIS (MG), SÃO JOÃO BATISTA DO GLÓRIA (MG)	Rio Grande	BG051	28/02/2019	973,28	2	7007,60	0,02	70,08
GD7 - Afluentes Mineiros do Médio Grande	ALPINÓPOLIS (MG), SÃO JOÃO BATISTA DO GLÓRIA (MG)	Rio Grande	BG051	14/11/2019	1123,21	2	8087,09	0,02	80,87

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
GD7 - Afluentes Mineiros do Médio Grande	PASSOS (MG)	Ribeirão da Bocaina	BG053	26/02/2019	2,00	3,6	25,97	0,22	1,59
GD7 - Afluentes Mineiros do Médio Grande	PASSOS (MG)	Ribeirão da Bocaina	BG053	13/08/2019	0,72	3,2	8,28	0,42	1,09
GD5 - Rio Sapucaí	CONCEIÇÃO DOS OUROS (MG)	Rio Sapucaí-Mirim	BG054	20/02/2019	22,50	2	161,96	0,12	9,72
GD5 - Rio Sapucaí	CONCEIÇÃO DOS OUROS (MG)	Rio Sapucaí-Mirim	BG054	06/11/2019	6,73	2	48,43	0,14	3,39
GD7 - Afluentes Mineiros do Médio Grande	CÁSSIA (MG)	Ribeirão São Pedro (GD7)	BG056	27/02/2019	3,72	2	26,78	0,29	3,88
GD7 - Afluentes Mineiros do Médio Grande	CÁSSIA (MG)	Ribeirão São Pedro (GD7)	BG056	14/08/2019	1,91	2	13,74	0,03	0,21
GD8 - Afluentes Mineiros do Baixo Grande	CONCEIÇÃO DAS ALAGOAS (MG)	Rio Uberaba	BG059	26/03/2019	49,87	2	359,09	0,06	10,77
GD8 - Afluentes Mineiros do Baixo Grande	CONCEIÇÃO DAS ALAGOAS (MG)	Rio Uberaba	BG059	24/09/2019	6,74	2	48,53	0,15	3,64
GD4 - Rio Verde	TRÊS PONTAS (MG)	Ribeirão da Espera	BG067	27/02/2019	3,42	2	24,64	0,07	0,86
GD4 - Rio Verde	TRÊS PONTAS (MG)	Ribeirão da Espera	BG067	14/08/2019	1,47	2	10,57	0,07	0,37
GD7 - Afluentes Mineiros do Médio Grande	FORTALEZA DE MINAS (MG)	Rio São João (GD7)	BG072	26/02/2019	17,06	2	122,86	0,07	4,30
GD7 - Afluentes Mineiros do Médio Grande	FORTALEZA DE MINAS (MG)	Rio São João (GD7)	BG072	13/08/2019	7,34	2	52,87	0,09	2,38
GD7 - Afluentes Mineiros do Médio Grande	PRATÁPOLIS (MG)	Rio Santana (GD7)	BG074	27/02/2019	12,41	5,9	263,59	0,36	16,08
GD7 - Afluentes Mineiros do Médio Grande	PRATÁPOLIS (MG)	Rio Santana (GD7)	BG074	14/08/2019	4,48	2	32,26	0,14	2,26

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	BANDEIRA DO SUL (MG), POÇOS DE CALDAS (MG)	Rio Pardo (GD6)	BG075	28/02/2019	28,32	2,1	214,11	0,25	25,49
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	BANDEIRA DO SUL (MG), POÇOS DE CALDAS (MG)	Rio Pardo (GD6)	BG075	15/08/2019	12,27	2	88,35	0,08	3,53
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	INCONFIDENTES (MG)	Rio Mogi-Guaçu	BG077	07/05/2019	6,93	2	49,87	0,05	1,25
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	INCONFIDENTES (MG)	Rio Mogi-Guaçu	BG077	05/11/2019	3,30	2	23,78	0,07	0,83
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ESPÍRITO SANTO DO PINHAL (SP), JACUTINGA (MG)	Rio Eleutério	BG081	07/05/2019	3,55	2	25,56	0,05	0,64
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ESPÍRITO SANTO DO PINHAL (SP), JACUTINGA (MG)	Rio Eleutério	BG081	05/11/2019	5,98	2	43,06	0,1	2,15
GD3 - Entorno do Reservatório de Furnas	MUZAMBINHO (MG)	Rio Muzambinho	BG089	13/05/2019	1,23	5,6	24,71	0,16	0,71
GD3 - Entorno do Reservatório de Furnas	MUZAMBINHO (MG)	Rio Muzambinho	BG089	12/08/2019	0,75	8,1	21,73	0,16	0,43
GD3 - Entorno do Reservatório de Furnas	MONTE BELO (MG)	Rio Muzambo	BG090	13/05/2019	11,41	2	82,14	0,04	1,64
GD3 - Entorno do Reservatório de Furnas	MONTE BELO (MG)	Rio Muzambo	BG090	12/08/2019	7,02	2	50,54	0,08	2,02
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ESPÍRITO SANTO DO PINHAL (SP)	Rio Mogi-Guaçu	BG093	07/05/2019	17,93	2	129,10	0,03	1,94
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ESPÍRITO SANTO DO PINHAL (SP)	Rio Mogi-Guaçu	BG093	05/11/2019	13,90	2,4	120,10	0,09	4,50

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ARCEBURGO (MG)	Rio Canoas	BG095	14/05/2019	7,12	2	51,29	0,08	2,05
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ARCEBURGO (MG)	Rio Canoas	BG095	13/08/2019	3,26	2	23,49	0,03	0,35
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	POÇOS DE CALDAS (MG)	Ribeirão das Antas	BG096	28/02/2019	2,28	2	16,42	0,02	0,16
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	POÇOS DE CALDAS (MG)	Ribeirão das Antas	BG096	15/08/2019	0,49	2	3,52	0,06	0,11
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ANDRADAS (MG)	Rio Jaguari-Mirim	BG097	01/03/2019	11,21	9,9	399,60	0,79	31,89
GD6 - Afluentes Mineiros dos Rios Mogi-Guaçu / Pardo	ANDRADAS (MG)	Rio Jaguari-Mirim	BG097	16/08/2019	1,52	7,7	42,11	0,49	2,68
SF3 - Rio Paraopeba	ENTRE RIOS DE MINAS (MG)	Rio Brumado	BP024	22/04/2019	4,23	2	30,44	0,02	0,30
SF3 - Rio Paraopeba	ENTRE RIOS DE MINAS (MG)	Rio Brumado	BP024	15/07/2019	2,38	3,1	26,51	0,07	0,60
SF3 - Rio Paraopeba	BELO VALE (MG)	Rio Paraopeba	BP029	24/04/2019	19,15	2	137,89	0,03	2,07
SF3 - Rio Paraopeba	BELO VALE (MG)	Rio Paraopeba	BP029	23/07/2019	11,49	2	82,70	0,07	2,89
SF3 - Rio Paraopeba	MÁRIO CAMPOS (MG), SÃO JOAQUIM DE BICAS (MG)	Rio Paraopeba	BP068	25/04/2019	26,59	2	191,44	0,07	6,70
SF3 - Rio Paraopeba	MÁRIO CAMPOS (MG), SÃO JOAQUIM DE BICAS (MG)	Rio Paraopeba	BP068	26/08/2019	14,31	2	103,06	0,17	8,76
SF3 - Rio Paraopeba	JUATUBA (MG)	Ribeirão Serra Azul	BP069	05/02/2019	0,44	2	3,19	0,08	0,13
SF3 - Rio Paraopeba	JUATUBA (MG)	Ribeirão Serra Azul	BP069	25/07/2019	0,39	2	2,82	0,48	0,68
SF3 - Rio Paraopeba	BETIM (MG), SÃO JOAQUIM DE BICAS (MG)	Rio Paraopeba	BP070	04/02/2019	39,23	2	282,45	0,21	29,66
SF3 - Rio Paraopeba	BETIM (MG), SÃO JOAQUIM DE BICAS (MG)	Rio Paraopeba	BP070	26/08/2019	15,07	2	108,52	0,2	10,85

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF3 - Rio Paraopeba	BETIM (MG), JUATUBA (MG)	Rio Betim	BP071	05/02/2019	1,94	4	27,89	0,42	2,93
SF3 - Rio Paraopeba	BETIM (MG), JUATUBA (MG)	Rio Betim	BP071	25/07/2019	1,24	15	66,69	5,58	24,81
SF3 - Rio Paraopeba	BETIM (MG)	Rio Paraopeba	BP072	05/02/2019	37,16	2	267,55	0,02	2,68
SF3 - Rio Paraopeba	BETIM (MG)	Rio Paraopeba	BP072	26/08/2019	15,38	2	110,74	0,84	46,51
SF3 - Rio Paraopeba	CURVELO (MG), POMPÉU (MG)	Rio Paraopeba	BP078	07/02/2019	74,78	2	538,39	0,02	5,38
SF3 - Rio Paraopeba	CURVELO (MG), POMPÉU (MG)	Rio Paraopeba	BP078	27/08/2019	18,07	2	130,11	0,14	9,11
SF3 - Rio Paraopeba	CONGONHAS (MG), CONSELHEIRO LAFAIETE (MG), SÃO BRÁS DO SUAÇUÍ (MG)	Rio Paraopeba	BP079	22/04/2019	2,89	2	20,82	0,02	0,21
SF3 - Rio Paraopeba	CONGONHAS (MG), CONSELHEIRO LAFAIETE (MG), SÃO BRÁS DO SUAÇUÍ (MG)	Rio Paraopeba	BP079	15/07/2019	1,80	2	12,98	0,02	0,13
SF3 - Rio Paraopeba	PAPAGAIOS (MG), PARAOPEBA (MG)	Rio Paraopeba	BP083	06/02/2019	61,78	2	444,79	0,02	4,45
SF3 - Rio Paraopeba	PAPAGAIOS (MG), PARAOPEBA (MG)	Rio Paraopeba	BP083	26/07/2019	23,94	2	172,37	0,11	9,48
SF3 - Rio Paraopeba	BETIM (MG)	Rio Betim	BP088	05/02/2019	0,32	2	2,34	0,02	0,02
SF3 - Rio Paraopeba	BETIM (MG)	Rio Betim	BP088	25/07/2019	0,20	2,6	1,91	0,15	0,11
SF3 - Rio Paraopeba	FELIXLÂNDIA (MG), POMPÉU (MG)	Rio Paraopeba	BP099	07/02/2019	33,23	2	239,26	0,02	2,39
SF3 - Rio Paraopeba	FELIXLÂNDIA (MG), POMPÉU (MG)	Rio Paraopeba	BP099	27/08/2019	10,04	2	72,29	0,27	9,76
PS1 - Rios Preto e Paraibuna	MATIAS BARBOSA (MG)	Rio Paraibuna	BS018	19/03/2019	18,21	3,6	236,03	0,15	9,83
PS1 - Rios Preto e Paraibuna	MATIAS BARBOSA (MG)	Rio Paraibuna	BS018	26/11/2019	14,56	5,5	288,21	0,3	15,72
PS1 - Rios Preto e Paraibuna	QUATIS (RJ)	Rio Preto (PS1)	BS027	28/05/2019	49,12	2	353,66	0,02	3,54

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
PS1 - Rios Preto e Paraibuna	QUATIS (RJ)	Rio Preto (PS1)	BS027	26/11/2019	41,81	2	301,04	0,09	13,55
PS2 - Rios Pomba e Muiriaé	SANTO ANTÔNIO DE PÁDUA (RJ)	Rio Pomba	BS054	14/03/2019	52,79	2	380,05	0,02	3,80
PS2 - Rios Pomba e Muiriaé	SANTO ANTÔNIO DE PÁDUA (RJ)	Rio Pomba	BS054	21/11/2019	70,03	2	504,21	0,08	20,17
PS2 - Rios Pomba e Muiriaé	TOMBOS (MG)	Rio Carangola	BS056	22/05/2019	10,49	2	75,51	0,02	0,76
PS2 - Rios Pomba e Muiriaé	TOMBOS (MG)	Rio Carangola	BS056	20/11/2019	12,27	2	88,35	0,07	3,09
PS2 - Rios Pomba e Muiriaé	PATROCÍNIO DO MURIAÉ (MG)	Rio Muriaé	BS057	22/05/2019	29,83	2	214,75	0,06	6,44
PS2 - Rios Pomba e Muiriaé	PATROCÍNIO DO MURIAÉ (MG)	Rio Muriaé	BS057	20/11/2019	66,53	2	479,03	0,13	31,14
PS1 - Rios Preto e Paraibuna	BELMIRO BRAGA (MG)	Rio do Peixe (PS1)	BS061	19/03/2019	58,54	2	421,48	0,02	4,21
PS1 - Rios Preto e Paraibuna	BELMIRO BRAGA (MG)	Rio do Peixe (PS1)	BS061	26/11/2019	44,12	2	317,68	0,02	3,18
PS2 - Rios Pomba e Muiriaé	CARMO (RJ)	Rio Paraíba do Sul	BS070	14/03/2019	348,52	2	2509,32	0,05	62,73
PS2 - Rios Pomba e Muiriaé	CARMO (RJ)	Rio Paraíba do Sul	BS070	21/11/2019	176,97	2	1274,21	0,07	44,60
PS1 - Rios Preto e Paraibuna	LIMA DUARTE (MG)	Rio do Peixe (PS1)	BS085	20/03/2019	10,58	2	76,19	0,06	2,29
PS1 - Rios Preto e Paraibuna	LIMA DUARTE (MG)	Rio do Peixe (PS1)	BS085	27/11/2019	7,02	2	50,51	0,05	1,26
BU1 - Rio Buranhém	GUARATINGA (BA), SANTO ANTÔNIO DO JACINTO (MG)	Rio Buranhém	BU001	07/02/2019	0,26	2,1	1,95	0,02	0,02
BU1 - Rio Buranhém	GUARATINGA (BA), SANTO ANTÔNIO DO JACINTO (MG)	Rio Buranhém	BU001	15/08/2019	2,61	2	18,81	0,06	0,56
SF5 - Rio das Velhas	ITABIRITO (MG)	Rio Itabirito	BV035	03/04/2019	5,01	2	36,04	0,07	1,26
SF5 - Rio das Velhas	ITABIRITO (MG)	Rio Itabirito	BV035	10/07/2019	4,03	2,7	39,12	0,11	1,59
SF5 - Rio das Velhas	NOVA LIMA (MG), RAPOSOS (MG)	Rio das Velhas	BV063	05/04/2019	11,39	2	82,02	0,05	2,05

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF5 - Rio das Velhas	NOVA LIMA (MG), RAPOSOS (MG)	Rio das Velhas	BV063	11/10/2019	3,61	4,2	54,58	0,11	1,43
SF5 - Rio das Velhas	SABARÁ (MG)	Rio das Velhas	BV067	05/04/2019	11,13	2	80,14	0,03	1,20
SF5 - Rio das Velhas	SABARÁ (MG)	Rio das Velhas	BV067	12/07/2019	7,55	2,8	76,07	0,12	3,26
SF5 - Rio das Velhas	SABARÁ (MG)	Ribeirão Sabará	BV076	05/04/2019	1,06	6	22,88	0,18	0,69
SF5 - Rio das Velhas	SABARÁ (MG)	Ribeirão Sabará	BV076	12/07/2019	0,95	15	51,36	0,45	1,54
SF5 - Rio das Velhas	SABARÁ (MG)	Rio das Velhas	BV080	08/04/2019	11,42	2	82,19	0,05	2,05
SF5 - Rio das Velhas	SABARÁ (MG)	Rio das Velhas	BV080	15/07/2019	5,94	2,7	57,69	0,13	2,78
SF5 - Rio das Velhas	SANTA LUZIA (MG)	Rio das Velhas	BV105	04/06/2019	16,95	16	976,55	0,39	23,80
SF5 - Rio das Velhas	SANTA LUZIA (MG)	Rio das Velhas	BV105	16/07/2019	13,54	22	1072,37	0,72	35,10
SF5 - Rio das Velhas	VESPASIANO (MG)	Ribeirão da Mata	BV130	11/04/2019	4,39	5,2	82,16	0,21	3,32
SF5 - Rio das Velhas	VESPASIANO (MG)	Ribeirão da Mata	BV130	18/07/2019	2,37	13	110,96	0,72	6,15
SF5 - Rio das Velhas	JABOTICATUBAS (MG)	Rio Jaboticatubas	BV136	12/04/2019	1,38	2	9,91	0,02	0,10
SF5 - Rio das Velhas	JABOTICATUBAS (MG)	Rio Jaboticatubas	BV136	19/07/2019	0,78	2	5,58	0,02	0,06
SF5 - Rio das Velhas	LAGOA SANTA (MG)	Rio das Velhas	BV137	12/04/2019	30,26	2	217,84	0,44	47,93
SF5 - Rio das Velhas	LAGOA SANTA (MG)	Rio das Velhas	BV137	19/07/2019	21,06	8,2	621,72	0,55	41,70
SF5 - Rio das Velhas	RIO ACIMA (MG)	Rio das Velhas	BV139	04/06/2019	12,82	2	92,32	0,04	1,85
SF5 - Rio das Velhas	RIO ACIMA (MG)	Rio das Velhas	BV139	10/10/2019	10,85	2	78,11	0,04	1,56
SF5 - Rio das Velhas	JEQUITIBÁ (MG)	Ribeirão Jequitibá	BV140	22/04/2019	3,10	2	22,29	0,17	1,90
SF5 - Rio das Velhas	JEQUITIBÁ (MG)	Ribeirão Jequitibá	BV140	22/07/2019	1,43	5,7	29,26	0,82	4,21
SF5 - Rio das Velhas	SANTANA DE PIRAPAMA (MG)	Rio das Velhas	BV141	22/04/2019	58,89	2	424,02	0,16	33,92
SF5 - Rio das Velhas	SANTANA DE PIRAPAMA (MG)	Rio das Velhas	BV141	22/07/2019	26,70	16	1537,86	0,58	55,75
SF5 - Rio das Velhas	CORINTO (MG)	Rio Bicudo	BV147	25/04/2019	1,26	2	9,04	0,02	0,09

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF5 - Rio das Velhas	VÁRZEA DA PALMA (MG)	Rio das Velhas	BV148	25/04/2019	133,23	2	959,26	0,08	38,37
SF5 - Rio das Velhas	VÁRZEA DA PALMA (MG)	Rio das Velhas	BV148	24/10/2019	24,12	3,4	295,28	0,3	26,05
SF5 - Rio das Velhas	VÁRZEA DA PALMA (MG)	Rio das Velhas	BV149	26/04/2019	143,44	2	1032,80	0,09	46,48
SF5 - Rio das Velhas	VÁRZEA DA PALMA (MG)	Rio das Velhas	BV149	24/10/2019	21,79	3,1	243,20	0,22	17,26
SF5 - Rio das Velhas	LASSANCE (MG)	Rio das Velhas	BV151	25/04/2019	147,29	2	1060,50	0,09	47,72
SF5 - Rio das Velhas	LASSANCE (MG)	Rio das Velhas	BV151	24/10/2019	26,77	2,1	202,34	0,34	32,76
SF5 - Rio das Velhas	SANTO HIPÓLITO (MG)	Rio das Velhas	BV152	24/04/2019	132,61	2	954,80	0,15	71,61
SF5 - Rio das Velhas	SANTO HIPÓLITO (MG)	Rio das Velhas	BV152	23/10/2019	22,24	5,5	440,27	0,25	20,01
SF5 - Rio das Velhas	SANTA LUZIA (MG)	Rio das Velhas	BV153	10/04/2019	30,83	6,3	699,22	0,14	15,54
SF5 - Rio das Velhas	SANTA LUZIA (MG)	Rio das Velhas	BV153	17/07/2019	17,52		0,00		0,00
IB1 - Itabapoana	ALTO CAPARAÓ (MG)	Rio Caparaó	IB001	17/04/2019	0,58	2	4,14	0,05	0,10
IB1 - Itabapoana	ALTO CAPARAÓ (MG)	Rio Caparaó	IB001	16/07/2019	0,19	4,6	3,14	0,16	0,11
IB1 - Itabapoana	CAIANA (MG)	Rio São João (IB1)	IB003	17/04/2019	4,67	2,9	48,74	0,09	1,51
IB1 - Itabapoana	CAIANA (MG)	Rio São João (IB1)	IB003	16/07/2019	2,27	4,1	33,56	0,08	0,65
IN1 - Rio Itanhém	UMBURATIBA (MG)	Rio Itanhém	IN001	08/02/2019	5,38	2	38,71	0,02	0,39
IN1 - Rio Itanhém	UMBURATIBA (MG)	Rio Itanhém	IN001	16/08/2019	6,14	2	44,21	0,08	1,77
JQ1 - Alto Jequitinhonha	BERILO (MG), VIRGEM DA LAPA (MG)	Rio Jequitinhonha	JE007	25/04/2019	48,76	2	351,09	0,02	3,51
JQ1 - Alto Jequitinhonha	BERILO (MG), VIRGEM DA LAPA (MG)	Rio Jequitinhonha	JE007	25/07/2019	46,76	2	336,66	0,02	3,37
JQ2 - Rio Araçuaí	TURMALINA (MG)	Rio Araçuaí	JE013	24/04/2019	14,42	2	103,80	0,02	1,04
JQ2 - Rio Araçuaí	TURMALINA (MG)	Rio Araçuaí	JE013	24/07/2019	3,92	2	28,25	0,02	0,28
JQ2 - Rio Araçuaí	MINAS NOVAS (MG)	Rio Fanado	JE014	23/04/2019	1,74	2	12,54	0,02	0,13
JQ2 - Rio Araçuaí	MINAS NOVAS (MG)	Rio Fanado	JE014	24/07/2019	0,30	2	2,16	0,02	0,02

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG)	Rio Gravatá	JE016	25/04/2019	0,98	2	7,03	0,05	0,18
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG)	Rio Gravatá	JE016	25/07/2019	0,02	2	0,15	0,02	0,00
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG)	Rio Araçuaí	JE017	26/04/2019	17,64	2	127,04	0,09	5,72
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG)	Rio Araçuaí	JE017	26/07/2019	5,86	2	42,19	0,02	0,42
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG), FRANCISCO BADARÓ (MG)	Rio Setúbal	JE018	25/04/2019	2,43	2	17,48	0,04	0,35
JQ2 - Rio Araçuaí	ARAÇUAÍ (MG), FRANCISCO BADARÓ (MG)	Rio Setúbal	JE018	25/07/2019	2,65	2	19,04	0,04	0,38
JQ3 - Médio / Baixo Rio Jequitinhonha	JEQUITINHONHA (MG)	Rio São Miguel (JQ3)	JE020	06/02/2019	0,95	2	6,81	0,04	0,14
JQ3 - Médio / Baixo Rio Jequitinhonha	JEQUITINHONHA (MG)	Rio São Miguel (JQ3)	JE020	13/08/2019	6,31	2	45,41	0,07	1,59
JQ3 - Médio / Baixo Rio Jequitinhonha	JEQUITINHONHA (MG)	Rio Jequitinhonha	JE021	06/02/2019	50,80	2	365,78	0,02	3,66
JQ3 - Médio / Baixo Rio Jequitinhonha	JEQUITINHONHA (MG)	Rio Jequitinhonha	JE021	13/08/2019	46,16	2	332,37	0,05	8,31
JQ3 - Médio / Baixo Rio Jequitinhonha	ALMENARA (MG)	Rio São Francisco (JQ3)	JE022	06/02/2019	0,09	2	0,66	0,02	0,01
JQ3 - Médio / Baixo Rio Jequitinhonha	ALMENARA (MG)	Rio São Francisco (JQ3)	JE022	14/08/2019	0,42	2	2,99	0,08	0,12
JQ3 - Médio / Baixo Rio Jequitinhonha	ALMENARA (MG)	Rio Jequitinhonha	JE023	06/02/2019	52,85	2	380,53	0,02	3,81
JQ3 - Médio / Baixo Rio Jequitinhonha	ALMENARA (MG)	Rio Jequitinhonha	JE023	14/08/2019	51,31	2	369,42	0,08	14,78
JQ3 - Médio / Baixo Rio Jequitinhonha	SALTO DA DIVISA (MG)	Rio Jequitinhonha	JE025	06/02/2019	54,84	2	394,87	0,02	3,95
JQ3 - Médio / Baixo Rio Jeguitinhonha	SALTO DA DIVISA (MG)	Rio Jequitinhonha	JE025	14/08/2019	62,53	2	450,18	0,06	13,51
JQ3 - Médio / Baixo Rio Jeguitinhonha	JEQUITINHONHA (MG)	Rio Jequitinhonha	JE028	05/02/2019	48,36	2	348,18	0,03	5,22
JQ3 - Médio / Baixo Rio Jequitinhonha	JEQUITINHONHA (MG)	Rio Jequitinhonha	JE028	13/08/2019	47,47		0,00		0,00
JQ3 - Médio / Baixo Rio Jequitinhonha	MEDINA (MG)	Ribeirão São Pedro (JQ3)	JE029	05/02/2019	0,01	12	0,27	0,36	0,01

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
JQ3 - Médio / Baixo Rio Jequitinhonha	MEDINA (MG)	Ribeirão São Pedro (JQ3)	JE029	30/10/2019	0,01	23	0,78	2,03	0,07
JU1 - Rio Jucuruçu	PALMÓPOLIS (MG)	Rio Jucuruçú	JU001	08/02/2019	0,70	2	5,05	0,02	0,05
JU1 - Rio Jucuruçu	PALMÓPOLIS (MG)	Rio Jucuruçú	JU001	16/08/2019	2,00	2	14,40	0,02	0,14
JU1 - Rio Jucuruçu	PALMÓPOLIS (MG)	Rio Jucuruçú	JU003	08/02/2019	0,88	2	6,32	0,02	0,06
JU1 - Rio Jucuruçu	PALMÓPOLIS (MG)	Rio Jucuruçú	JU003	16/08/2019	3,12	2	22,44	0,09	1,01
MU1 - Rio Mucuri	NANUQUE (MG)	Rio Mucuri	MU013	14/02/2019	15,12	2	108,86	0,02	1,09
MU1 - Rio Mucuri	NANUQUE (MG)	Rio Mucuri	MU013	22/08/2019	22,47	2	161,75	0,09	7,28
SF2 - Rio Pará	CARMÓPOLIS DE MINAS (MG), CLÁUDIO (MG), ITAGUARA (MG)	Rio Pará	PA003	13/02/2019	12,22	2	87,96	0,02	0,88
SF2 - Rio Pará	CARMÓPOLIS DE MÍNAS (MG), CLÁUDIO (MG), ITAGUARA (MG)	Rio Pará	PA003	21/08/2019	4,68	2	33,70	0,03	0,51
SF2 - Rio Pará	DIVINÓPOLIS (MG), SÃO SEBASTIÃO DO OESTE (MG)	Rio Itapecerica	PA004	15/02/2019	23,81	2	171,43	0,13	11,14
SF2 - Rio Pará	DIVINÓPOLIS (MG), SÃO SEBASTIÃO DO OESTE (MG)	Rio Itapecerica	PA004	23/08/2019	4,74	2	34,10	0,52	8,87
SF2 - Rio Pará	CARMO DO CAJURU (MG), DIVINÓPOLIS (MG)	Rio Pará	PA005	15/02/2019	21,16	2	152,35	0,03	2,29
SF2 - Rio Pará	CARMO DO CAJURU (MG), DIVINÓPOLIS (MG)	Rio Pará	PA005	23/08/2019	17,13	2	123,31	0,02	1,23
SF2 - Rio Pará	DIVINÓPOLIS (MG)	Rio Itapecerica	PA007	15/02/2019	28,98	2	208,68	0,2	20,87
SF2 - Rio Pará	DIVINÓPOLIS (MG)	Rio Itapecerica	PA007	23/08/2019	4,34	2	31,22	0,43	6,71
SF2 - Rio Pará	ITAÚNA (MG)	Rio São João (SF2)	PA009	15/02/2019	2,11	25	189,99	0,5	3,80
SF2 - Rio Pará	ITAÚNA (MG)	Rio São João (SF2)	PA009	23/08/2019	1,92	13	89,72	0,77	5,31
SF2 - Rio Pará	CONCEIÇÃO DO PARÁ (MG), PITANGUI (MG)	Rio São João (SF2)	PA011	26/02/2019	15,47	2	111,36	0,17	9,47
SF2 - Rio Pará	CONCEIÇÃO DO PARÁ (MG), PITANGUI (MG)	Rio São João (SF2)	PA011	12/11/2019	4,43	2	31,90	0,28	4,47

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF2 - Rio Pará	CONCEIÇÃO DO PARÁ (MG), PITANGUI (MG)	Rio Pará	PA013	21/05/2019	48,45	2	348,85	0,03	5,23
SF2 - Rio Pará	CONCEIÇÃO DO PARÁ (MG), PITANGUI (MG)	Rio Pará	PA013	27/08/2019	31,14	2	224,24	0,15	16,82
SF2 - Rio Pará	MARTINHO CAMPOS (MG)	Rio do Picão	PA017	26/02/2019	2,55	2	18,37	0,02	0,18
SF2 - Rio Pará	MARTINHO CAMPOS (MG)	Rio do Picão	PA017	27/08/2019	0,72	2	5,20	0,04	0,10
SF2 - Rio Pará	MARTINHO CAMPOS (MG), POMPÉU (MG)	Rio Pará	PA019	27/02/2019	186,33	2	1341,57	0,07	46,95
SF2 - Rio Pará	MARTINHO CAMPOS (MG), POMPÉU (MG)	Rio Pará	PA019	27/08/2019	40,61	2	292,38	0,12	17,54
SF2 - Rio Pará	NOVA SERRANA (MG)	Ribeirão da Fartura	PA020	26/02/2019	0,28	8	8,04	0,12	0,12
SF2 - Rio Pará	NOVA SERRANA (MG)	Ribeirão da Fartura	PA020	11/11/2019	0,03	4,6	0,51	0,09	0,01
SF2 - Rio Pará	CARMO DO CAJURU (MG), DIVINÓPOLIS (MG)	Rio Pará	PA028	15/02/2019	20,17	2,3	167,04	0,05	3,63
SF2 - Rio Pará	CARMO DO CAJURU (MG), DIVINÓPOLIS (MG)	Rio Pará	PA028	23/08/2019	16,80	2	120,97	0,09	5,44
PN1 - Alto Rio Paranaíba	PATOS DE MINAS (MG)	Rio Paranaíba	PB003	12/03/2019	75,30	2	542,18	0,27	73,19
PN1 - Alto Rio Paranaíba	PATOS DE MINAS (MG)	Rio Paranaíba	PB003	10/09/2019	10,25	2,3	84,90	0,11	4,06
PN1 - Alto Rio Paranaíba	ARAGUARI (MG)	Rio Jordão	PB009	15/03/2019	10,19	2	73,36	0,16	5,87
PN1 - Alto Rio Paranaíba	ARAGUARI (MG)	Rio Jordão	PB009	29/11/2019	4,76	2	34,24	0,12	2,05
PN2 - Rio Araguari	PERDIZES (MG), SERRA DO SALITRE (MG)	Rio Quebra Anzol	PB011	28/03/2019	105,73	2	761,23	0,04	15,22
PN2 - Rio Araguari	PERDIZES (MG), SERRA DO SALITRE (MG)	Rio Quebra Anzol	PB011	26/09/2019	29,51	2	212,45	0,02	2,12
PN2 - Rio Araguari	PERDIZES (MG)	Rio Capivara	PB013	29/03/2019	27,13	2	195,32	0,19	18,56
PN2 - Rio Araguari	PERDIZES (MG)	Rio Capivara	PB013	27/09/2019	19,69	2	141,77	0,42	29,77
PN2 - Rio Araguari	PATROCÍNIO (MG)	Ribeirão Santo Antônio (PN2)	PB015	27/03/2019	3,03	2	21,85	0,02	0,22

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
PN2 - Rio Araguari	PATROCÍNIO (MG)	Ribeirão Santo Antônio (PN2)	PB015	25/09/2019	0,40	2	2,90	0,02	0,03
PN2 - Rio Araguari	SACRAMENTO (MG), SANTA JULIANA (MG)	Rio Araguari	PB017	27/03/2019	98,09	2	706,26	0,05	17,66
PN2 - Rio Araguari	SACRAMENTO (MG), SANTA JULIANA (MG)	Rio Araguari	PB017	25/09/2019	30,51	2	219,69	0,02	2,20
PN2 - Rio Araguari	ARAGUARI (MG), UBERLÂNDIA (MG)	Rio Araguari	PB019	18/03/2019	134,23	2	966,44	0,02	9,66
PN2 - Rio Araguari	ARAGUARI (MG), UBERLÂNDIA (MG)	Rio Araguari	PB019	16/09/2019	383,90	2	2764,11	0,02	27,64
PN2 - Rio Araguari	ARAGUARI (MG), TUPACIGUARA (MG)	Rio Araguari	PB021	15/03/2019	174,36	2	1255,40	0,02	12,55
PN2 - Rio Araguari	ARAGUARI (MG), TUPACIGUARA (MG)	Rio Araguari	PB021	13/09/2019	507,86	2	3656,61	0,02	36,57
PN2 - Rio Araguari	UBERLÂNDIA (MG)	Rio Uberabinha	PB022	18/03/2019	21,08	2	151,79	0,03	2,28
PN2 - Rio Araguari	UBERLÂNDIA (MG)	Rio Uberabinha	PB022	16/09/2019	6,08	2	43,79	0,02	0,44
PN2 - Rio Araguari	UBERLÂNDIA (MG)	Rio Uberabinha	PB023	10/06/2019	11,89	9,3	398,21	0,36	15,41
PN2 - Rio Araguari	UBERLÂNDIA (MG)	Rio Uberabinha	PB023	16/09/2019	9,77	4,6	161,76	0,31	10,90
PN3 - Afluentes Mineiro do Baixo Paranaíba	ARAPORÃ (MG), ITUMBIARA (GO)	Rio Paranaíba	PB025	20/03/2019	331,95	2	2390,04	0,03	35,85
PN3 - Afluentes Mineiro do Baixo Paranaíba	ARAPORÃ (MG), ITUMBIARA (GO)	Rio Paranaíba	PB025	18/09/2019	2334,73	2	16810,08	0,03	252,15
PN3 - Afluentes Mineiro do Baixo Paranaíba	ITUIUTABA (MG)	Rio Tijuco	PB027	20/03/2019	160,00	2	1151,99	0,04	23,04
PN3 - Afluentes Mineiro do Baixo Paranaíba	ITUIUTABA (MG)	Rio Tijuco	PB027	18/09/2019	18,56	2	133,60	0,02	1,34
PN3 - Afluentes Mineiro do Baixo Paranaíba	GURINHATÃ (MG), ITUIUTABA (MG)	Rio da Prata (PN3)	PB029	22/03/2019	107,73	2	775,62	0,11	42,66

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
PN3 - Afluentes Mineiro do Baixo Paranaíba	GURINHATÃ (MG), ITUIUTABA (MG)	Rio da Prata (PN3)	PB029	19/09/2019	13,60	2	97,92	0,02	0,98
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG), SANTA VITÓRIA (MG)	Rio São Domingos (PN3)	PB033	25/03/2019	56,07	2	403,73	0,05	10,09
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG), SANTA VITÓRIA (MG)	Rio São Domingos (PN3)	PB033	23/09/2019	8,87	2	63,85	0,03	0,96
PN3 - Afluentes Mineiro do Baixo Paranaíba	CARNEIRINHO (MG)	Rio Paranaíba	PB034	25/03/2019	2052,84	2	14780,44	0,02	147,80
PN3 - Afluentes Mineiro do Baixo Paranaíba	CARNEIRINHO (MG)	Rio Paranaíba	PB034	02/12/2019	3074,35	2,4	26562,34	0,02	221,35
PN1 - Alto Rio Paranaíba	ABADIA DOS DOURADOS (MG)	Rio Dourados	PB038	13/03/2019	47,16	2	339,52	0,11	18,67
PN1 - Alto Rio Paranaíba	ABADIA DOS DOURADOS (MG)	Rio Dourados	PB038	11/09/2019	3,93	2	28,26	0,03	0,42
PN1 - Alto Rio Paranaíba	ARAGUARI (MG)	Rio Piçarrão	PB041	18/03/2019	2,89	2	20,82	0,02	0,21
PN1 - Alto Rio Paranaíba	ARAGUARI (MG)	Rio Piçarrão	PB041	16/09/2019	0,50	2	3,62	0,02	0,04
PN2 - Rio Araguari	IBIÁ (MG)	Rio Misericórdia	PB042	29/03/2019	35,08	2	252,60	0,05	6,31
PN2 - Rio Araguari	IBIÁ (MG)	Rio Misericórdia	PB042	06/12/2019	36,05	2	259,52	0,12	15,57
PN3 - Afluentes Mineiro do Baixo Paranaíba	ARAPORÃ (MG)	Rio Piedade	PB045	20/03/2019	30,29	2	218,11	0,03	3,27
PN3 - Afluentes Mineiro do Baixo Paranaíba	ARAPORÃ (MG)	Rio Piedade	PB045	18/09/2019	7,34	2	52,86	0,02	0,53
PN3 - Afluentes Mineiro do Baixo Paranaíba	UBERLÂNDIA (MG)	Rio Tijuco	PB046	19/03/2019	33,76	2	243,09	0,03	3,65

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
PN3 - Afluentes Mineiro do Baixo Paranaíba	UBERLÂNDIA (MG)	Rio Tijuco	PB046	17/09/2019	7,44	2	53,60	0,02	0,54
PN3 - Afluentes Mineiro do Baixo Paranaíba	UBERLÂNDIA (MG)	Rio Dourado (PN3)	PB047	19/03/2019	7,24	2	52,16	0,02	0,52
PN3 - Afluentes Mineiro do Baixo Paranaíba	UBERLÂNDIA (MG)	Rio Dourado (PN3)	PB047	17/09/2019	1,81	2	13,03	0,02	0,13
PN3 - Afluentes Mineiro do Baixo Paranaíba	MONTE ALEGRE DE MINAS (MG)	Rio Babilônia	PB048	20/03/2019	11,68	2	84,12	0,02	0,84
PN3 - Afluentes Mineiro do Baixo Paranaíba	MONTE ALEGRE DE MINAS (MG)	Rio Babilônia	PB048	18/09/2019	1,88	2	13,54	0,02	0,14
PN3 - Afluentes Mineiro do Baixo Paranaíba	MONTE ALEGRE DE MINAS (MG)	Ribeirão Monte Alegre	PB049	20/03/2019	3,81	2	27,45	0,04	0,55
PN3 - Afluentes Mineiro do Baixo Paranaíba	MONTE ALEGRE DE MINAS (MG)	Ribeirão Monte Alegre	PB049	18/09/2019	0,61	4,1	8,93	0,14	0,30
PN3 - Afluentes Mineiro do Baixo Paranaíba	PRATA (MG)	Rio da Prata (PN3)	PB050	19/03/2019	34,12	2	245,65	0,04	4,91
PN3 - Afluentes Mineiro do Baixo Paranaíba	PRATA (MG)	Rio da Prata (PN3)	PB050	03/12/2019	42,87	2	308,68	0,06	9,26
PN3 - Afluentes Mineiro do Baixo Paranaíba	GURINHATÃ (MG)	Rio São Jerônimo	PB051	22/03/2019	7,47	2	53,76	0,04	1,08
PN3 - Afluentes Mineiro do Baixo Paranaíba	GURINHATÃ (MG)	Rio São Jerônimo	PB051	19/09/2019	1,69	2	12,17	0,02	0,12
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG)	Rio São Domingos (PN3)	PB052	21/03/2019	18,63	2	134,14	0,05	3,35

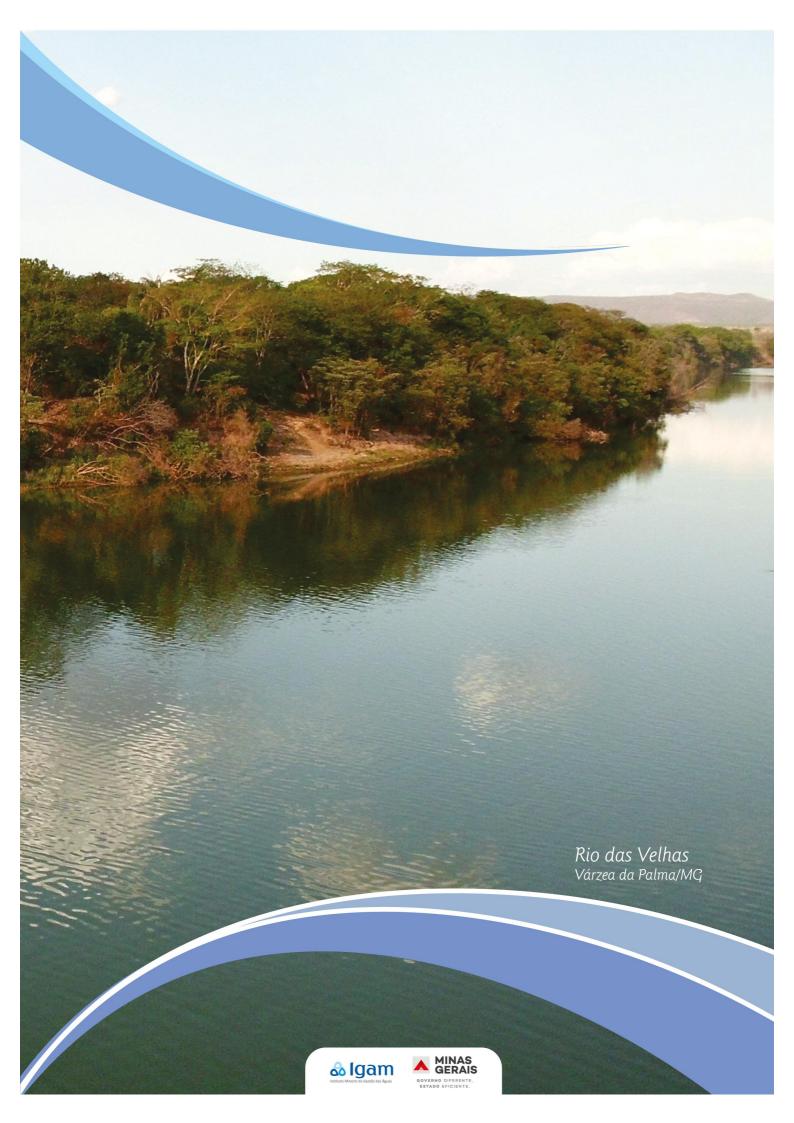
СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG)	Rio São Domingos (PN3)	PB052	20/09/2019	0,52	2	3,71	0,04	0,07
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG)	Ribeirão Volta Grande	PB054	25/03/2019	2,47	2	17,76	0,03	0,27
PN3 - Afluentes Mineiro do Baixo Paranaíba	LIMEIRA DO OESTE (MG)	Ribeirão Volta Grande	PB054	23/09/2019	0,59	2	4,24	0,03	0,06
PE1 - Rio Peruípe	SERRA DOS AIMORÉS (MG)	Rio Pau Alto	PE001	14/02/2019	0,08	2	0,60	0,06	0,02
PE1 - Rio Peruípe	SERRA DOS AIMORÉS (MG)	Rio Pau Alto	PE001	22/08/2019	0,13	2	0,91	0,1	0,05
PJ1 - Piracicaba / Jaguari	EXTREMA (MG)	Rio Jaguari	PJ001	22/02/2019	13,53	2	97,42	0,15	7,31
PJ1 - Piracicaba / Jaguari	EXTREMA (MG)	Rio Jaguari	PJ001	08/11/2019	7,40	2	53,28	0,09	2,40
SF7 - Rio Paracatu	UNAÍ (MG)	Ribeirão Roncador	PT002	06/06/2019	1,99	2	14,31	0,02	0,14
SF7 - Rio Paracatu	UNAÍ (MG)	Ribeirão Roncador	PT002	12/09/2019	1,03	2	7,39	0,02	0,07
SF7 - Rio Paracatu	LAGOA GRANDE (MG), PARACATU (MG)	Rio Paracatu	PT003	11/03/2019	133,81	2	963,40	0,06	28,90
SF7 - Rio Paracatu	LAGOA GRANDE (MG), PARACATU (MG)	Rio Paracatu	PT003	09/09/2019	11,44	2	82,33	0,02	0,82
SF7 - Rio Paracatu	PARACATU (MG)	Córrego Rico	PT005	05/06/2019	0,65	2	4,67	0,27	0,63
SF7 - Rio Paracatu	PARACATU (MG)	Córrego Rico	PT005	11/09/2019	0,26	3,6	3,36	0,33	0,31
SF7 - Rio Paracatu	UNAÍ (MG)	Rio Preto (SF7)	PT007	07/06/2019	40,00	2	288,01	0,02	2,88
SF7 - Rio Paracatu	UNAÍ (MG)	Rio Preto (SF7)	PT007	13/09/2019	37,39	2	269,22	0,02	2,69
SF7 - Rio Paracatu	BRASILÂNDIA DE MINAS (MG)	Rio Paracatu	PT009	12/06/2019	97,87	2	704,64	0,02	7,05
SF7 - Rio Paracatu	BRASILÂNDIA DE MINAS (MG)	Rio Paracatu	PT009	04/12/2019	120,51	2	867,64	0,13	56,40
SF7 - Rio Paracatu	BURITIZEIRO (MG), SANTA FÉ DE MINAS (MG)	Rio Paracatu	PT013	11/03/2019	360,20	2	2593,44	0,06	77,80

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF7 - Rio Paracatu	BURITIZEIRO (MG), SANTA FÉ DE MINAS (MG)	Rio Paracatu	PT013	25/11/2019	114,21	2	822,31	0,15	61,67
SF7 - Rio Paracatu	PARACATU (MG)	Ribeirão Escurinho	PTE013	05/06/2019	7,07	2	50,90	0,02	0,51
SF7 - Rio Paracatu	PARACATU (MG)	Ribeirão Escurinho	PTE013	27/11/2019	211,91	2	1525,74	0,12	91,54
SF7 - Rio Paracatu	PARACATU (MG)	Ribeirão São Pedro (SF7)	PTE025	06/06/2019	2,52	2	18,17	0,02	0,18
SF7 - Rio Paracatu	PARACATU (MG)	Ribeirão São Pedro (SF7)	PTE025	12/09/2019	1,16	2	8,38	0,02	0,08
SF7 - Rio Paracatu	UNAÍ (MG)	Rio Preto (SF7)	PTE027	06/06/2019	37,73	2	271,66	0,02	2,72
SF7 - Rio Paracatu	UNAÍ (MG)	Rio Preto (SF7)	PTE027	12/09/2019	37,41	2	269,37	0,03	4,04
DO1 - Rio Piranga	BARRA LONGA (MG)	Rio Gualaxo do Norte	RD011	03/06/2019	7,96	2	57,31	0,02	0,57
DO1 - Rio Piranga	BARRA LONGA (MG)	Rio Gualaxo do Norte	RD011	08/10/2019	4,53	2	32,65	0,02	0,33
DO1 - Rio Piranga	RIO CASCA (MG), SÃO DOMINGOS DO PRATA (MG)	Rio Doce	RD019	04/06/2019	67,73	2	487,64	0,02	4,88
DO1 - Rio Piranga	RIO CASCA (MG), SÃO DOMINGOS DO PRATA (MG)	Rio Doce	RD019	09/10/2019	44,52	2	320,55	0,03	4,81
DO1 - Rio Piranga	MARLIÉRIA (MG), PINGO- D'ÁGUA (MG)	Rio Doce	RD023	07/05/2019	81,76	2	588,65	0,03	8,83
DO1 - Rio Piranga	MARLIÉRIA (MG), PINGO- D'ÁGUA (MG)	Rio Doce	RD023	11/10/2019	53,69	2	386,60	0,04	7,73
DO5 - Rio Caratinga	BELO ORIENTE (MG), BUGRE (MG)	Rio Doce	RD033	10/04/2019	241,94	2	1741,95	0,05	43,55
DO5 - Rio Caratinga	BELO ORIENTE (MG), BUGRE (MG)	Rio Doce	RD033	16/10/2019	57,47	2	413,78	0,05	10,34
DO2 - Rio Piracicaba	IPATINGA (MG)	Rio Doce	RD035	04/06/2019	111,57	2	803,31	0,04	16,07
DO2 - Rio Piracicaba	IPATINGA (MG)	Rio Doce	RD035	11/10/2019	68,24	2	491,29	0,05	12,28
DO3 - Rio Santo Antônio	NAQUE (MG)	Rio Santo Antônio (DO3)	RD039	10/04/2019	107,74	2	775,73	0,03	11,64
DO3 - Rio Santo Antônio	NAQUE (MG)	Rio Santo Antônio (DO3)	RD039	10/07/2019	13,18	2	94,86	0,05	2,37

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Doce	RD044	10/04/2019	434,90	2	3131,27	0,02	31,31
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Doce	RD044	11/12/2019	1127,67	2	8119,24	0,16	649,54
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Doce	RD045	10/04/2019	305,20	2	2197,43	0,02	21,97
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Doce	RD045	16/10/2019	125,41	2	902,92	0,05	22,57
DO4 - Rio Suaçuí Grande	GALILÉIA (MG), TUMIRITINGA (MG)	Rio Doce	RD053	15/04/2019	281,20	2	2024,65	0,03	30,37
DO4 - Rio Suaçuí Grande	GALILÉIA (MG), TUMIRITINGA (MG)	Rio Doce	RD053	15/07/2019	124,55	2	896,73	0,02	8,97
DO5 - Rio Caratinga	CARATINGA (MG)	Rio Caratinga	RD056	17/04/2019	2,45	13	114,58	0,39	3,44
DO5 - Rio Caratinga	CARATINGA (MG)	Rio Caratinga	RD056	17/07/2019	0,68	8,1	19,87	0,57	1,40
DO5 - Rio Caratinga	CONSELHEIRO PENA (MG)	Rio Caratinga	RD057	15/04/2019	8,60	2	61,92	0,05	1,55
DO5 - Rio Caratinga	CONSELHEIRO PENA (MG)	Rio Caratinga	RD057	15/07/2019	3,95	2	28,45	0,02	0,28
DO5 - Rio Caratinga	CONSELHEIRO PENA (MG)	Rio Doce	RD058	15/04/2019	317,65	2	2287,09	0,04	45,74
DO5 - Rio Caratinga	CONSELHEIRO PENA (MG)	Rio Doce	RD058	15/07/2019	117,63	2	846,94	0,02	8,47
DO6 - Rio Manhuaçú	RESPLENDOR (MG)	Rio Doce	RD059	12/04/2019	283,59	2	2041,82	0,05	51,05
DO6 - Rio Manhuaçú	RESPLENDOR (MG)	Rio Doce	RD059	12/07/2019	131,31	2	945,43	0,02	9,45
DO6 - Rio Manhuaçú	AIMORÉS (MG)	Rio Manhuaçu	RD065	15/04/2019	40,33	2	290,38	0,03	4,36
DO6 - Rio Manhuaçú	AIMORÉS (MG)	Rio Manhuaçu	RD065	12/07/2019	19,74	2	142,10	0,02	1,42
DO6 - Rio Manhuaçú	AIMORÉS (MG), BAIXO GUANDU (ES)	Rio Doce	RD067	12/04/2019	256,21	2	1844,69	0,02	18,45
DO6 - Rio Manhuaçú	AIMORÉS (MG), BAIXO GUANDU (ES)	Rio Doce	RD067	18/10/2019	69,26	2	498,64	0,02	4,99
DO1 - Rio Piranga	BARRA LONGA (MG)	Rio do Carmo	RD071	03/06/2019	26,40	2	190,08	0,06	5,70
DO1 - Rio Piranga	BARRA LONGA (MG)	Rio do Carmo	RD071	08/10/2019	19,77	2	142,32	0,02	1,42

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
DO1 - Rio Piranga	RIO DOCE (MG), SANTA CRUZ DO ESCALVADO (MG)	Rio Doce	RD072	03/06/2019	62,84	2	452,47	0,04	9,05
DO1 - Rio Piranga	RIO DOCE (MG), SANTA CRUZ DO ESCALVADO (MG)	Rio Doce	RD072	09/10/2019	40,37	2	290,68	0,04	5,81
DO4 - Rio Suaçuí Grande	FERNANDES TOURINHO (MG), PERIQUITO (MG)	Rio Doce	RD083	10/04/2019	380,49	2	2739,55	0,02	27,40
DO4 - Rio Suaçuí Grande	FERNANDES TOURINHO (MG), PERIQUITO (MG)	Rio Doce	RD083	16/10/2019	119,01	2	856,88	0,03	12,85
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Suaçuí Grande	RD089	12/04/2019	10,09	2	72,62	0,02	0,73
DO4 - Rio Suaçuí Grande	GOVERNADOR VALADARES (MG)	Rio Suaçuí Grande	RD089	10/07/2019	8,59	2	61,83	0,08	2,47
DO5 - Rio Caratinga	INHAPIM (MG)	Rio Preto (DO5)	RD092	18/04/2019	5,39	2	38,79	0,06	1,16
DO5 - Rio Caratinga	INHAPIM (MG)	Rio Preto (DO5)	RD092	17/07/2019	1,53	2	11,01	0,02	0,11
DO5 - Rio Caratinga	TARUMIRIM (MG)	Rio Caratinga	RD093	17/04/2019	15,12	2	108,89	0,02	1,09
DO5 - Rio Caratinga	TARUMIRIM (MG)	Rio Caratinga	RD093	17/07/2019	1,84	2	13,23	0,03	0,20
SF5 - Rio das Velhas	CAETÉ (MG)	Córrego Caeté	SC03	10/04/2019	0,21	11	8,27	0,85	0,64
SF5 - Rio das Velhas	CAETÉ (MG)	Córrego Caeté	SC03	08/07/2019	0,16	25	14,41	0,6	0,35
SF5 - Rio das Velhas	CAETÉ (MG)	Córrego Caeté	SC03	10/07/2019	0,16		0,00		0,00
SF5 - Rio das Velhas	VESPASIANO (MG)	Ribeirão da Mata	SC17	11/04/2019	3,70	6,1	81,21	0,11	1,46
SF5 - Rio das Velhas	VESPASIANO (MG)	Ribeirão da Mata	SC17	12/07/2019	2,04	12	87,96	0,56	4,10
SF5 - Rio das Velhas	PRUDENTE DE MORAIS (MG)	Ribeirão Jequitibá	SC24	11/04/2019	0,09	14	4,62	0,06	0,02
SF5 - Rio das Velhas	PRUDENTE DE MORAIS (MG)	Ribeirão Jequitibá	SC24	15/10/2019	0,02	71	5,47	0,89	0,07
SF1 - Afluentes do Alto São Francisco	ARCOS (MG), IGUATAMA (MG)	Rio São Miguel (SF1)	SF002	12/02/2019	4,88	2	35,14	0,05	0,88
SF1 - Afluentes do Alto São Francisco	ARCOS (MG), IGUATAMA (MG)	Rio São Miguel (SF1)	SF002	20/08/2019	0,68	2	4,92	0,02	0,05
SF1 - Afluentes do Alto São Francisco	IGUATAMA (MG)	Rio São Francisco (SF)	SF003	12/02/2019	124,52	2	896,54	0,03	13,45

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF1 - Afluentes do Alto São Francisco	IGUATAMA (MG)	Rio São Francisco (SF)	SF003	20/08/2019	41,31	2	297,44	0,02	2,97
SF1 - Afluentes do Alto São Francisco	ABAETÉ (MG), MARTINHO CAMPOS (MG)	Rio São Francisco (SF)	SF005	26/02/2019	294,38	2	2119,51	0,12	127,17
SF1 - Afluentes do Alto São Francisco	ABAETÉ (MG), MARTINHO CAMPOS (MG)	Rio São Francisco (SF)	SF005	12/11/2019	64,36	2	463,36	0,05	11,58
SF4 - Entorno de Três Marias	ABAETÉ (MG), POMPÉU (MG)	Rio São Francisco (SF)	SF006	27/02/2019	581,61	2	4187,56	0,07	146,56
SF4 - Entorno de Três Marias	ABAETÉ (MG), POMPÉU (MG)	Rio São Francisco (SF)	SF006	13/11/2019	86,69	2	624,19	0,02	6,24
SF4 - Entorno de Três Marias	ABAETÉ (MG)	Ribeirão Marmelada	SF007	27/02/2019	10,99	2	79,12	0,1	3,96
SF4 - Entorno de Três Marias	ABAETÉ (MG)	Ribeirão Marmelada	SF007	13/11/2019	178,48	6	3855,17	0,76	488,32
SF1 - Afluentes do Alto São Francisco	LUZ (MG), MOEMA (MG)	Rio São Francisco (SF)	SF010	12/02/2019	170,55	2	1227,93	0,08	49,12
SF1 - Afluentes do Alto São Francisco	LUZ (MG), MOEMA (MG)	Rio São Francisco (SF)	SF010	26/08/2019	56,11	2	403,96	0,08	16,16
SF4 - Entorno de Três Marias	TRÊS MARIAS (MG)	Rio São Francisco (SF)	SF016	28/02/2019	225,56	2	1624,01	0,02	16,24
SF4 - Entorno de Três Marias	TRÊS MARIAS (MG)	Rio São Francisco (SF)	SF016	14/11/2019	645,34	2	4646,43	0,02	46,46
SF4 - Entorno de Três Marias	SÃO GONÇALO DO ABAETÉ (MG)	Rio Abaeté	SF017	28/02/2019	100,33	2	722,37	0,36	130,03
SF4 - Entorno de Três Marias	SÃO GONÇALO DO ABAETÉ (MG)	Rio Abaeté	SF017	14/11/2019	38,78	2	279,19	0,02	2,79
SF6 - Rios Jequitaí e Pacuí	IBIAÍ (MG)	Riacho Canabrava	SF018	06/12/2019	2,39	7,8	67,07	0,02	0,17
SF6 - Rios Jequitaí e Pacuí	PIRAPORA (MG)	Rio São Francisco (SF)	SF019	13/06/2019	434,55	2	3128,75	0,16	250,30
SF6 - Rios Jequitaí e Pacuí	PIRAPORA (MG)	Rio São Francisco (SF)	SF019	05/12/2019	1058,62	2	7622,09	0,18	685,99
SF6 - Rios Jequitaí e Pacuí	LAGOA DOS PATOS (MG), VÁRZEA DA PALMA (MG)	Rio Jequitaí	SF021	14/06/2019	1,59	2	11,48	0,02	0,11
SF6 - Rios Jequitaí e Pacuí	LAGOA DOS PATOS (MG), VÁRZEA DA PALMA (MG)	Rio Jequitaí	SF021	05/12/2019	118,19	2	850,93	0,02	8,51


СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF9 - Rios Pandeiro e Calindó	MANGA (MG)	Rio Japoré	SF022	15/03/2019	0,87	2	6,24	0,03	0,09
SF9 - Rios Pandeiro e Calindó	MANGA (MG)	Rio Japoré	SF022	29/11/2019	0,42	2	3,04	0,04	0,06
SF6 - Rios Jequitaí e Pacuí	IBIAÍ (MG)	Rio São Francisco (SF)	SF023	14/06/2019	491,63	2	3539,75	0,13	230,08
SF6 - Rios Jequitaí e Pacuí	IBIAÍ (MG)	Rio São Francisco (SF)	SF023	06/12/2019	1660,12	2	11952,86	0,23	1374,58
SF9 - Rios Pandeiro e Calindó	JANUÁRIA (MG)	Rio Peruaçu	SF024	18/03/2019	0,04	2	0,27	0,02	0,00
SF9 - Rios Pandeiro e Calindó	JANUÁRIA (MG)	Rio Peruaçu	SF024	03/12/2019	0,00	2	0,01	0,06	0,00
SF8 - Rio Urucuia	SÃO ROMÃO (MG)	Rio São Francisco (SF)	SF025	11/03/2019	857,98	2	6177,46	0,05	154,44
SF8 - Rio Urucuia	SÃO ROMÃO (MG)	Rio São Francisco (SF)	SF025	25/11/2019	735,90	2	5298,46	0,05	132,46
SF9 - Rios Pandeiro e Calindó	SÃO FRANCISCO (MG)	Rio São Francisco (SF)	SF027	11/03/2019	1033,51	2	7441,29	0,08	297,65
SF9 - Rios Pandeiro e Calindó	SÃO FRANCISCO (MG)	Rio São Francisco (SF)	SF027	25/11/2019	1030,07	2	7416,53	0,04	148,33
SF9 - Rios Pandeiro e Calindó	JANUÁRIA (MG)	Ribeirão Pandeiros	SF028	14/03/2019	11,27	2	81,17	0,04	1,62
SF9 - Rios Pandeiro e Calindó	JANUÁRIA (MG)	Ribeirão Pandeiros	SF028	28/11/2019	6,89	2	49,62	0,02	0,50
SF9 - Rios Pandeiro e Calindó	ITACARAMBI (MG)	Rio São Francisco (SF)	SF031	18/03/2019	886,12	2	6380,06	0,08	255,20
SF9 - Rios Pandeiro e Calindó	ITACARAMBI (MG)	Rio São Francisco (SF)	SF031	03/12/2019	1046,71	2	7536,32	0,04	150,73
SF9 - Rios Pandeiro e Calindó	MANGA (MG)	Rio São Francisco (SF)	SF033	15/03/2019	935,72	2	6737,16	0,02	67,37
SF9 - Rios Pandeiro e Calindó	MANGA (MG)	Rio São Francisco (SF)	SF033	29/11/2019	1017,72	2	7327,56	0,05	183,19
SF9 - Rios Pandeiro e Calindó	JUVENÍLIA (MG)	Rio Carinhanha	SF034	15/03/2019	76,77	2	552,77	0,03	8,29
SF9 - Rios Pandeiro e Calindó	JUVENÍLIA (MG)	Rio Carinhanha	SF034	29/11/2019	60,70	2	437,05	0,04	8,74

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF6 - Rios Jequitaí e Pacuí	MONTES CLAROS (MG)	Rio Riachão	SF039	13/03/2019	0,08	2	0,58	0,02	0,01
SF6 - Rios Jequitaí e Pacuí	MONTES CLAROS (MG)	Rio Riachão	SF039	27/11/2019	0,03	2	0,22	0,02	0,00
SF6 - Rios Jequitaí e Pacuí	IBIAÍ (MG), PONTO CHIQUE (MG)	Rio Pacuí	SF040	14/06/2019	0,46	2	3,31	0,02	0,03
SF6 - Rios Jequitaí e Pacuí	IBIAÍ (MG), PONTO CHIQUE (MG)	Rio Pacuí	SF040	06/12/2019	5,85	2	42,09	0,03	0,63
SF4 - Entorno de Três Marias	TRÊS MARIAS (MG)	Rio São Francisco (SF)	SF054	23/05/2019	258,15	2	1858,69	0,03	27,88
SF4 - Entorno de Três Marias	TRÊS MARIAS (MG)	Rio São Francisco (SF)	SF054	14/11/2019	468,95	2	3376,44	0,02	33,76
SF6 - Rios Jequitaí e Pacuí	JEQUITAÍ (MG)	Rio Jequitaí	SFC005	14/06/2019	2,96	2	21,32	0,02	0,21
SF6 - Rios Jequitaí e Pacuí	JEQUITAÍ (MG)	Rio Jequitaí	SFC005	05/12/2019	152,89	2,8	1541,17	0,09	49,54
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG)	Rio Gorutuba	SFC145	21/03/2019	0,22	2,8	2,22	0,02	0,02
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG)	Rio Gorutuba	SFC145	19/09/2019	0,67	2	4,83	0,02	0,05
SF10 - Afluentes do Rio Verde Grande	PORTEIRINHA (MG)	Rio Serra Branca	SFC200	21/03/2019	1,21	2	8,69	0,02	0,09
SF10 - Afluentes do Rio Verde Grande	PORTEIRINHA (MG)	Rio Serra Branca	SFC200	06/12/2019	0,33	2	2,40	0,02	0,02
SF7 - Rio Paracatu	PARACATU (MG)	Rio Paracatu	SFH11	05/06/2019	44,00	2	316,80	0,02	3,17
SF7 - Rio Paracatu	PARACATU (MG)	Rio Paracatu	SFH11	11/09/2019	16,34	2	117,63	0,04	2,35
SF7 - Rio Paracatu	BRASILÂNDIA DE MINAS (MG)	Rio Paracatu	SFH13	12/06/2019	115,55	2	831,93	0,02	8,32
SF7 - Rio Paracatu	BRASILÂNDIA DE MINAS (MG)	Rio Paracatu	SFH13	04/12/2019	196,87	2,6	1842,73	0,12	85,05
SF8 - Rio Urucuia	SÃO ROMÃO (MG)	Rio Urucuia	SFH17	11/03/2019	147,38	2	1061,16	0,03	15,92
SF8 - Rio Urucuia	SÃO ROMÃO (MG)	Rio Urucuia	SFH17	25/11/2019	114,29	2	822,87	0,04	16,46
SF10 - Afluentes do Rio Verde Grande	CAPITÃO ENÉAS (MG), MONTES CLAROS (MG)	Rio Verde Grande	SFJ16	25/03/2019	11,99	6,4	276,32	0,16	6,91

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF10 - Afluentes do Rio Verde Grande	MONTES CLAROS (MG), SÃO JOÃO DA PONTE (MG)	Ribeirão do Ouro	SFJ17	22/03/2019	1,72	2	12,40	0,02	0,12
SF10 - Afluentes do Rio Verde Grande	MONTES CLAROS (MG), SÃO JOÃO DA PONTE (MG)	Ribeirão do Ouro	SFJ17	23/09/2019	0,03	2	0,21	0,02	0,00
SF10 - Afluentes do Rio Verde Grande	CAPITÃO ENÉAS (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ18	25/03/2019	1,40	2	10,08	0,08	0,40
SF10 - Afluentes do Rio Verde Grande	CAPITÃO ENÉAS (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ18	19/09/2019	0,21	2	1,55	0,02	0,02
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ20	25/03/2019	0,94	2,9	9,80	0,07	0,24
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ20	19/09/2019	0,11	3,4	1,30	0,03	0,01
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ22	21/03/2019	0,94	2	6,75	0,08	0,27
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), SÃO JOÃO DA PONTE (MG)	Rio Verde Grande	SFJ22	19/09/2019	0,11	2	0,77	0,02	0,01
SF10 - Afluentes do Rio Verde Grande	VERDELÂNDIA (MG)	Rio Verde Grande	SFJ23	20/03/2019	0,87	2	6,27	0,03	0,09
SM1 - Rio São Mateus	ATALÉIA (MG), ECOPORANGA (ES)	Rio São Mateus (SM1)	SM001	12/02/2019	3,70	2	26,65	0,07	0,93
SM1 - Rio São Mateus	ATALÉIA (MG), ECOPORANGA (ES)	Rio São Mateus (SM1)	SM001	20/08/2019	2,36	2	17,02	0,02	0,17
SM1 - Rio São Mateus	MANTENA (MG)	Rio São Mateus (SM1)	SM003	12/04/2019	1,50	2	10,80	0,12	0,65
SM1 - Rio São Mateus	MANTENA (MG)	Rio São Mateus (SM1)	SM003	12/07/2019	0,62	2	4,43	0,02	0,04
SF8 - Rio Urucuia	BURITIS (MG)	Rio Urucuia	UR001	10/06/2019	11,06	2	79,63	0,02	0,80
SF8 - Rio Urucuia	BURITIS (MG)	Rio Urucuia	UR001	17/09/2019	3,04	2	21,92	0,02	0,22
SF8 - Rio Urucuia	RIACHINHO (MG), URUCUIA (MG)	Rio Urucuia	UR007	07/06/2019	54,53	2	392,64	0,11	21,60
SF8 - Rio Urucuia	RIACHINHO (MG), URUCUIA (MG)	Rio Urucuia	UR007	29/11/2019	31,43	2	226,29	0,07	7,92
SF8 - Rio Urucuia	BONFINÓPOLIS DE MINAS (MG)	Ribeirão das Almas	UR009	07/06/2019	1,52	2	10,93	0,02	0,11

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF8 - Rio Urucuia	BONFINÓPOLIS DE MINAS (MG)	Ribeirão das Almas	UR009	13/09/2019	0,88	2	6,30	0,04	0,13
SF8 - Rio Urucuia	ARINOS (MG), BURITIS (MG)	Ribeirão São Domingos ou Rio São Domingos	UR011	11/06/2019	16,46	2	118,48	0,02	1,18
SF8 - Rio Urucuia	ARINOS (MG), BURITIS (MG)	Ribeirão São Domingos ou Rio São Domingos	UR011	17/09/2019	3,89	2	28,04	0,02	0,28
SF8 - Rio Urucuia	ARINOS (MG)	Rio Urucuia	UR013	09/06/2019	39,20	2	282,20	0,05	7,06
SF8 - Rio Urucuia	ARINOS (MG)	Rio Urucuia	UR013	15/09/2019	10,24	2	73,75	0,02	0,74
SF8 - Rio Urucuia	ARINOS (MG)	Rio São Miguel (SF8)	UR014	09/06/2019	6,41	2	46,14	0,02	0,46
SF8 - Rio Urucuia	ARINOS (MG)	Rio São Miguel (SF8)	UR014	15/09/2019	2,48	2	17,85	0,04	0,36
SF8 - Rio Urucuia	ARINOS (MG), URUCUIA (MG)	Ribeirão da Areia	UR015	07/06/2019	2,82	2	20,28	0,02	0,20
SF8 - Rio Urucuia	ARINOS (MG), URUCUIA (MG)	Ribeirão da Areia	UR015	29/11/2019	2,15	2	15,49	0,06	0,46
SF8 - Rio Urucuia	PINTÓPOLIS (MG), SÃO ROMÃO (MG)	Rio Urucuia	UR017	04/06/2019	55,90	2	402,48	0,05	10,06
SF8 - Rio Urucuia	PINTÓPOLIS (MG), SÃO ROMÃO (MG)	Rio Urucuia	UR017	26/11/2019	132,20	2,1	999,41	0,03	14,28
SF10 - Afluentes do Rio Verde Grande	GLAUCILÂNDIA (MG), MONTES CLAROS (MG)	Rio Verde Grande	VG001	26/03/2019	0,32	2	2,31	0,1	0,12
SF10 - Afluentes do Rio Verde Grande	MONTES CLAROS (MG)	Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	22/03/2019	1,45	6,1	31,77	0,02	0,10
SF10 - Afluentes do Rio Verde Grande	MONTES CLAROS (MG)	Ribeirão dos Vieiras ou Rio dos Vieiras	VG003	23/09/2019	0,34	8,6	10,54	0,88	1,08
SF10 - Afluentes do Rio Verde Grande	CAPITÃO ENÉAS (MG), MONTES CLAROS (MG)	Rio Verde Grande	VG004	22/03/2019	12,13	36	1571,53	0,28	12,22
SF10 - Afluentes do Rio Verde Grande	CAPITÃO ENÉAS (MG), MONTES CLAROS (MG)	Rio Verde Grande	VG004	09/12/2019	12,96	2,1	97,96	0,09	4,20
SF10 - Afluentes do Rio Verde Grande	JAÍBA (MG)	Rio Verde Grande	VG005	19/03/2019	0,53	2	3,83	0,06	0,11
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), NOVA PORTEIRINHA (MG)	Rio Gorutuba	VG007	21/03/2019	0,28	2	2,04	0,64	0,65

СН	Municípios	Curso D'água	Estação	Data de Amostragem	Descarga Liquida (m3/s)	DBO (mg/L)	Carga de DBO (kg/h)	Fósforo total (mg/L)	Carga de fósforo total (kg/h)
SF10 - Afluentes do Rio Verde Grande	JANAÚBA (MG), NOVA PORTEIRINHA (MG)	Rio Gorutuba	VG007	05/12/2019	0,71	7,3	18,57	1,11	2,82

