

BOLETIM MENSAL DA DENSIDADE DE CIANOBACTÉRIAS NA BACIA HIDROGRÁFICA DO RIO DAS VELHAS

Gerência de Monitoramento de Qualidade das Águas

GOVERNO DO ESTADO DE MINAS GERAIS

Sistema Estadual de Meio Ambiente e Recursos Hídricos Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável Instituto Mineiro de Gestão das Águas

SEMAD - Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável

Secretário

Luiz Sávio de Souza Cruz (até maio de 2016)

Jairo José Isaac

Secretário-Adjunto

Nalton Sebastião Moreira da Cruz (até maio de 2016)

Germano Luiz Gomes Vieira

IGAM – Instituto Mineiro de Gestão das Águas

Diretora geral

Maria de Fátima Chagas Dias Coelho

Diretor de Planejamento e Regulação

Márley Caetano de Mendonça

Gerente de Monitoramento de Qualidade das Águas

Katiane Cristina de Brito Almeida

Equipe Técnica

Ana Paula Dias Pena, graduanda em Engenharia Ambiental

Carolina Cristiane Pinto, Engenheira Química

Felipe Silva Marcondes, Estatístico

Isadora de Pinho Tavares, Geóloga

Mariana Elissa Vieira de Souza, Geógrafa

Maricene Menezes de Oliveira Mattos Paixao, Geóloga

Matheus Duarte Santos, Geógrafo

Regina Márcia Pimenta Assunção, Bióloga

Sérgio Pimenta Costa, Biólogo

Valdete de Souza Oliveira Mattos, Tecnóloga em Recursos Hídricos e Irrigação

Vanessa Kelly Saraiva, Química

BACIA HIDROGRÁFICA DO RIO DAS VELHAS

A bacia hidrográfica do rio das velhas localiza-se na região central do Estado de Minas Gerais, entre as coordenadas 17°15′S e 20°25′S – 43°25′W e 44°50′W, e corresponde a Unidade de Planejamento de Gestão de Recursos Hídricos (UPGRH) SF5. Possui uma área de 29173 Km², composta por 51 municípios e com uma população de 4,8 milhões de habitantes, e a bacia é subdividida em três territórios (Alto, Médio e Baixo). O rio das Velhas é o maior afluente em extensão da bacia do rio São Francisco, tendo sua nascente no município de Ouro Preto, desaguando no rio São Francisco, a jusante da barragem de Três Marias. Possui cerca de 761 km de extensão, 38,4 m de largura média, drenando uma área de 29.173 km².

A avaliação da densidade de cianobactérias da rede de monitoramento da qualidade do rio das Velhas é composta por 23 pontos de coleta. Para a avaliação das densidades de cianobactérias, no rio das Velhas, o IGAM prioriza os locais em que predominam condições potencialmente propícias ao desenvolvimento de florações de cianobactérias, nesse caso, toda a calha do rio das Velhas. As amostras, coletadas mensalmente, passam por análises laboratoriais, onde são avaliados cerca de 50 parâmetros. Neste boletim, foram considerados os resultados da avaliação da densidade de cianobactérias e concentração de cianotoxinas (microcistina e saxitoxina) para o período de maio de 2015 a maio de 2016. Na Tabela 1 são apresentadas as estações de monitoramento nas quais é avaliada a densidade de cianobactérias, bem como os municípios, classe de enquadramento e descrição das mesmas.

Tabela 1: Descrição das estações de monitoramento nas quais ocorre avaliação da densidade de cianobactérias no rio das Velhas.

Estação	Curso D'água	Classe de Enquadramento	Municípios	Descrição
BV001	Rio das Velhas	Classe Especial	Ouro Preto	Rio das Velhas próximo a sua nascente
BV013	Rio das Velhas	Classe 2	Itabirito	Rio das Velhas a montante da foz do Rio Itabirito
BV037	Rio das Velhas	Classe 2	Rio Acima	Rio das Velhas a jusante da foz do Rio Itabirito
AV210	Rio das Velhas	Classe 2	Rio Acima	Rio das Velhas na cidade de Rio Acima
BV139	Rio das Velhas	Classe 2	Rio Acima	Rio das Velhas a montante da ETA/COPASA, em Bela Fama
BV063	Rio das Velhas	Classe 2	Nova Lima, Raposos	Rio das Velhas a jusante do Ribeirão Água Suja
BV067	Rio das Velhas	Classe 2	Sabará	Rio das Velhas a montante do ribeirão Sabará
BV080	Rio das Velhas	Classe 3	Sabará	Rio das Velhas a jusante do Ribeirão Sabará
BV083	Rio das Velhas	Classe 3	Sabará	Rio das Velhas logo a jusante do Ribeirão Arrudas
BV105	Rio das Velhas	Classe 3	Santa Luzia	Rio das Velhas logo a jusante do Ribeirão do Onça
BV153	Rio das Velhas	Classe 3	Santa Luzia	Rio das Velhas a jusante do Ribeirão da Mata
SC16	Rio das Velhas	Classe 3	Santa Luzia	Rio das Velhas a jusante do aterro sanitário da Santa Luzia
BV137	Rio das Velhas	Classe 3	Lagoa Santa	Rio das Velhas na Ponte Raul Soares, em Lagoa Santa
BV138	Rio das Velhas	Classe 3	Lagoa Santa	Rio das Velhas no Parque do Sumidouro em Lagoa Santa

GOVERNO DO ESTADO DE MINAS GERAIS Sistema Estadual de Meio Ambiente e Recursos Hídricos Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável

Instituto Mineiro de Gestão das Águas

Estação	Curso D'água	Classe de Enquadramento	Municípios	Descrição
BV156	Rio das Velhas	Classe 2	Baldim	Rio das Velhas a jusante do Rio Jabuticatubas
BV141	Rio das Velhas	Classe 2	Santana de Pirapama	Rio das Velhas na cidade de Santana do Pirapama
BV142	Rio das Velhas	Classe 2	Inimutaba, Presidente Juscelino	Rio das Velhas a jusante do ribeirão Santo Antônio
BV150	Rio das Velhas	Classe 2	Santo Hipólito	Rio das Velhas a jusante do rio Paraúna, em Senhora da Glória
BV152	Rio das Velhas	Classe 2	Santo Hipólito	Rio das Velhas entre os Rios Paraúna e Pardo Grande
BV146	Rio das Velhas	Classe 2	Augusto de Lima, Corinto	Rio das Velhas a jusante do rio Pardo Grande
BV151	Rio das Velhas	Classe 2	Lassance	Rio das Velhas a jusante do córrego do Vinho em Lassance
BV148	Rio das Velhas	Classe 2	Várzea da Palma	Rio das Velhas na cidade de Várzea da Palma
BV149	Rio das Velhas	Classe 2	Várzea da Palma	Rio das Velhas a montante da sua foz no rio São Francisco em Guaicuí

As cianobactérias são microorganismos presentes em ambientes aquáticos e têm se tornado um problema em todo o mundo devido à possibilidade de produzirem toxinas altamente potentes, denominadas cianotoxinas e também à capacidade de desenvolver florações. Assim, quando tais florações ocorrem em corpos de água destinados ao abastecimento ou recreação estes organismos podem alterar os ambientes aquáticos e terrestres e trazendo riscos à saúde humana e animal.

A produção de toxina em cada espécie de cianobactéria varia em função da interação de diversos fatores, como a genética, o estado fisiológico do organismo e os parâmetros ambientais. Assim, uma mesma espécie pode produzir toxinas em um ambiente e não produzi-las em outro. As microcistinas são cianotoxinas hepatotóxicas, ou seja, atacam o fígado, onde produzem um efeito acumulativo e ocorrem com frequência podendo chegar a altas concentrações em água bruta. As saxitoxinas são cianotoxinas neurotóxicas e promovem o bloqueio neuromuscular do organismo. Sua presença vem sendo detectada em diferentes mananciais brasileiros.

O manual da Organização Mundial de Saúde - OMS considera três vias de exposição às cianobactérias em águas recreacionais: contato direto de partes expostas do corpo (incluindo ouvidos, olhos, boca, garganta e áreas cobertas com roupa de banho que podem capturar e concentrar células), a ingestão acidental e a inalação de água contendo células de cianobactérias.

RESULTADOS:

Densidade de Cianobactérias

Na tabela 2 são apresentados os resultados das contagens de cianobactérias do período de maio de 2015 a maio de 2016 para as estações monitoradas pelo IGAM que estão localizadas na sub-bacia do rio das Velhas. As amostragens de densidade de cianobactérias em todas as estações são realizadas mensalmente.

Destaca-se que os maiores valores obtido na calha do rio das Velhas, na coleta realizada entre os dias 09 e 18 de maio de 2016, foi de 131.057 cél/mL na estação de amostragem BV148 na cidade de Várzea da Palma, 127.358 cél/mL na estação de amostragem BV149 localizada no Rio das Velhas a montante da sua foz no rio São Francisco e 98.826 cél/mL na estação BV151 localizada no rio das Velhas a jusante do córrego do Vinho

GOVERNO DO ESTADO DE MINAS GERAIS

Sistema Estadual de Meio Ambiente e Recursos Hídricos Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável Instituto Mineiro de Gestão das Águas

em Lassance. Com exceção das estações citadas acima todos os demais resultados para o mês de maio de 2016 estão abaixo do limite estabelecido para rios de Classe 2 e 3, na Deliberação Normativa conjunta COPAM/CERH nº 01 de 2008 que é de 50.000 cél/mL e 100.000 cél/mL, respectivamente. Os valores em negrito na tabela indicam aqueles que estiveram acima dos limites da legislação.

Destaca-se que dentre os usos preponderantes estabelecidos para rios de Classe 2 está a recreação de contato primário cujo valor máximo permitido é de 10.000 cél/mL. Dessa forma, além das estações citadas acima, nas estações localizadas no rio das Velhas a jusante do rio Jabuticatubas (BV156), na cidade de Santana do Pirapama (BV141), no Parque do Sumidouro em Lagoa Santa (BV138) e a jusante do rio Pardo Grande (BV146) os resultados apresentados ultrapassaram o valor máximo permitido.

Dentre os principais fatores de pressão que podem contribuir para as elevadas densidades de cianobactérias destacam-se o aporte de nutrientes provenientes principalmente dos esgotos sanitários da Região Metropolitana de Belo Horizonte e o lançamento de efluentes de indústrias dos ramos têxtil, alimentício, laticínios, produção sucroalcooleira, além das atividades de agricultura e silvicultura presentes na região avaliada.

Tabela 2: Resultados da densidade de cianobactérias (cél/mL) nas amostras de água coletadas no rio das Velhas no período de maio de 2015 a maio de 2016.

Estação	Classe de	2015								2016				
Estação	Enquadramento	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai
BV001	Classe Especial	38	0	29	0	252	0	0	0	<1,00	17	0	65	0
BV013	Classe 2	0	0	49	0	76	0	245	0	0	327	25	199	0
BV037	Classe 2	38	241	353	781	392	0	33	0	15	615	796	971	100
AV210	Classe 2	76	101	-	277	454	-	141	0	-	1.394	1.007	-	149
BV139	Classe 2	50	0	0	323	151	65	0	<1,00	6	479	1.388	174	0
BV063	Classe 2	151	49	188	50	25	343	0	<1,00	0	50	898	199	25
BV067	Classe 2	454	328	865	294	22	147	<1,00	82	<1,00	66	184	448	0
BV080	Classe 3	612	2.515	252	98	114	0	60	82	0	367	3.592	448	<1,00
BV083	Classe 3	101	252	655	0	87	82	82	0	<1,00	1.306	2.408	1.245	697
BV105	Classe 3	7.378	13.765	5.960	5.176	30.288	11.495	13.002	7.397	8.654	7.233	18.565	1.812	2.588
BV153	Classe 3	4.539	10.507	4.580	5.633	33.734	19.626	-	1.290	-	5.976	20.769	6.319	3.529
SC16	Classe 3	2.515	9.144	1	9.576	23.594	-	12.899	1.102	•	8.286	-	-	3.837
BV137	Classe 3	1.763	6.858	19.724	9.258	23.202	30.468	69.557	2.041	5.584	14.785	12.687	6.678	6.226
BV138	Classe 3	2.653	-	11.838	11.699	23.006	50.258	75.680	3.755	5.266	13.324	17.291	4.915	11.321
BV156	Classe 2	1.209	17.283	22.696	10.230	70.496	30.640	56.821	1.915	1.157	21.610	9.609	20.477	23.757
BV141	Classe 2	5.298	39.922	29.145	141.459	42.616	2.898	57.311	607	2.294	4.751	23.496	168.687	14.254
BV142	Classe 2	8.327	146.707	389.423	605.244	204.671	1.012	2.978	50	874	3.715	25.570	38.501	9.674
BV150	Classe 2	14.246	145.662	154.300	1.143.138	61.475	5.633	10.532	146	723	1.170	9.160	3.633	3.285
BV152	Classe 2	26.876	155.902	218.795	928.737	123.080	12.589	13.813	1.024	1.033	856	16.655	147	8.817
BV146	Classe 2	16.132	166.223	274.065	709.288	40.249	40.889	62.455	2.580	1.910	846	627	2.837	11.051
BV151	Classe 2	61.001	309.824	192.058	444.122	16.328	206.223	50.780	5.715	<1,00	2.531	1.195	1.078	98.826
BV148	Classe 2	98.111	605.964	414.527	109.479	43.841	34.269	80.007	3.429	708	1.593	82	5.274	131.057
BV149	Classe 2	43.988	456.776	191.038	4.490	7.266	44.448	423.222	15.781	286	23.431	996	141.038	127.358

Concentração de cianotoxinas:

Nas estações onde há a presença de cianobactérias em densidades superiores a 20.000 cél/mL foi realizada a análise de cianotoxinas. No Brasil a única legislação que estabelece limites para concentração de cianotoxinas é a Portaria do Ministério da Saúde nº 2914 de 12/12/2011 (Federal), que estabelece procedimentos e responsabilidades relativos ao controle e vigilância da qualidade da água para o consumo humano. Nessa portaria o limite para presença de microcistinas é de 1 μg/L e de saxitoxinas 3 μg/L.

Na tabela 3 são apresentados os resultados da concentração de microcistina do período de maio de 2015 a maio de 2016 para as estações monitoradas pelo IGAM que estão localizadas na calha do rio das Velhas. No mês de novembro de 2015 as estações localizadas no rio das Velhas a jusante do rio Pardo Grande (BV146), na cidade de Várzea da Palma (BV148), a jusante do córrego do Vinho em Lassance (BV151) e a montante da sua foz no rio São Francisco (BV149), apresentaram concentração de microcistina acima do máximo estabelecido pela legislação. O mesmo ocorreu no mês de abril de 2016 na estação localizada no rio das Velhas a montante da sua foz no rio São Francisco (BV149). Os demais resultados se encontram dentro do limite estabelecido na Portaria 2914/11 do Ministério da Saúde.

Tabela 3: Resultados da concentração de microcistina (μg/L) nas amostras de água coletadas no rio das Velhas no período de maio de 2015 a maio de 2016.

F-4~		•	•	2015	•	•		2016					
Estação	mai	jun	Jul	Ago	Set	Nov	Dez	Jan	Fev	Mar	Abr	Mai	
SC16	-	-	-	-	0,60	-	-	-	-	-	-	-	
BV151	< 0,15	0,17	-	0,38	-	1,35	-	-	-	-	-	0,46	
BV149	< 0,15	< 0,15	-	-	-	7,05	-	-	0,33	-	1,53	0,57	
BV105	-	-	-	-	0,87	-	-	-	-	-	-	-	
BV153	•	-	-	-	0,23	-	-	-	-	0,19	-	-	
BV148	< 0,15	< 0,15	-	0,22	0,30	1,41	-	-	-	-	-	0,39	
BV137	-	-	-	-	<0,15	0,30	-	-	-	-	-	-	
BV138	-	-	-	-	<0,15	0,29	-	-	-	-	-	-	
BV150	-	< 0,15	< 0,15	0,15	0,45	-	-	-	-	-	-	-	
BV146	-	< 0,15	< 0,15	0,15	0,16	1,52	-	-	-	-	-	-	
BV156	-	-	-	-	0,46	0,39	-	-	0,25	-	0,34	0,25	
BV152	< 0,15	0,18	-	<0,15	0,52	-	-	-	-	-	-	-	
BV141	-	< 0,15	-	0,23	0,50	0,31	-	-	-	0,46	0,19	-	
BV142	-	< 0,15	< 0,15	<0,15	0,24	-	-	-	-	<0,15	0,21	-	

Na tabela 4 são apresentados os resultados da concentração de saxitoxina do período de maio de 2015 a maio de 2016 para as estações monitoradas pelo IGAM que estão localizadas na calha do rio das Velhas. Todos os resultados também estiveram dentro do limite estabelecido pela Portaria 2914/11 do Ministério da Saúde.

Tabela 4: Resultados da concentração de saxitoxina (μg/L) nas amostras de água coletadas no rio das Velhas no período de maio de 2015 a maio de 2016.

Estação				2015	2016							
Estação	mai	jun	Jul	Ago	Set	Nov	Dez	Jan	Fev	Mar	Abr	Mai
SC16	-	-	-	-	0,06	ı	-	-	-	-	-	-
BV151	0,13	0,02	-	0,02	-	0,03	-	-	-	-	-	0,18
BV149	0,12	< 0,02	-	-	-	0,19	-	-	0,18	-	0,23	0,32
BV105	-	-	-	-	0,04	-	-	-	-	-	-	-
BV153	-	-	-	-	0,07	-	-	-	-	0,22	-	-
BV148	0,07	< 0,02	-	<0,02	0,11	0,04	-	-	-	-	-	0,27
BV137	-	-	-	-	<0,02	0,03	-	-	-	-	-	-
BV138	-	-	-	-	0,07	0,04	-	-	-	-	-	-
BV150	-	< 0,03	< 0,02	0,03	<0,02	-	-	-	-	-	-	-
BV146	-	< 0,02	0,02	<0,02	0,03	0,03	-	1	1	•	-	-
BV156	-	-	-	-	0,1	0,03	-	-	0,14	-	0,20	0,05
BV152	0,11	< 0,02	0,02	0,03	<0,02	-	-	-	-	-	-	-
BV141	-	0,03	-	<0,02	0,02	<0,02	-	-	-	0,16	0,13	-
BV142	-	0,02	0,02	<0,02	0,09	-	-	-	-	0,14	0,27	-

PROJETO ÁGUAS DE MINAS

O Projeto Águas de Minas, do Instituto Mineiro de Gestão das Águas, é responsável pelo monitoramento da qualidade das águas superficiais e subterrâneas de Minas Gerais. Em execução desde 1997, o programa disponibiliza uma série histórica que permite avaliar a evolução da qualidade das águas no Estado e gera dados indispensáveis ao gerenciamento dos recursos hídricos, como informações relativas às áreas prioritárias para o controle da poluição.

Informações sobre o programa de monitoramento de qualidade de água acesse o portal Infohidro (http://portalinfohidro.igam.mg.gov.br/gestao-das-aguas/monitoramento/agua-superficial).