

Governo do Estado de Minas Gerais Sistema Estadual de Meio Ambiente Instituto Mineiro de Gestão das Águas Gerência de Monitoramento Hidrometeorológico

RELATÓRIO EXECUTIVO

QUALIDADE DAS ÁGUAS SUPERFICIAIS EM MINAS GERAIS EM 2011

PROJETO ÁGUAS DE MINAS

Gerência de Monitoramento Hidrometeorológico Diretoria de Pesquisa, Desenvolvimento e Monitoramento das Águas Instituto Mineiro de Gestão das Águas

> Maio de 2012 Belo Horizonte

SEMAD - Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável

Secretário

Adriano Magalhães

IGAM - Instituto Mineiro de Gestão das Águas

Diretoria Geral

Cleide Izabel Pedrosa de Melo

Diretoria de Pesquisa, Desenvolvimento e Monitoramento das Águas

Jeane Dantas de Carvalho Tobelem

Gerência de Monitoramento Hidrometeorológico

Wanderlene Ferreira Nacif, Química

Coordenação do Projeto Águas de Minas

Katiane Cristina de Brito Almeida, Bióloga

ESPAÇO DESTINADO PARA INFORMAÇÕES DE CATALOGAGEM E PUBLICAÇÃO

REALIZAÇÃO:

IGAM - Instituto Mineiro de Gestão das Águas

Diretoria de Pesquisa, Desenvolvimento e Monitoramento das Águas

Jeane Dantas de Carvalho Tobelem

Gerência de Monitoramento Hidrometeorológico

Wanderlene Ferreira Nacif, Química

Coordenação do Projeto Águas de Minas

Katiane Cristina de Brito Almeida, Bióloga

Equipe Técnica

Anita Veiga, Engenheira Civil
Dayan Diniz de Carvalho, Meteorologista
Fábio Hochleitner, Meteorologista
Leonardo Cristiano Matos, Geógrafo
Maíra Antunes, Engenheira Ambiental
Maricene Paixão, Geóloga
Matheus Duarte Santos, Geógrafo
Nádia Antônia Pinheiro dos Santos, Geógrafa
Paula Pereira de Souza, Meteorologista
Raimundo Nonato Frota Fernandes, Analista de Sistemas
Regina Márcia Pimenta de Mello, Bióloga
Ricardo Marcelo da Silva, Meteorologista
Sérgio Pimenta Costa, Biólogo
Vanessa Kelly Saraiva, Química

Estagiários

Débora Guimarães Dias, estudante de Engenharia Ambiental Natália Silvia Santos, estudante de Engenharia Química Rosana Rocha, estudante de Biologia Marcelo Rodrigues, estudante de Geografia

APOIO:

Coletas de Amostras e Análises

CETEC - Fundação Centro Tecnológico de Minas Gerais

Setor de Medições Ambientais - SAM

José Antônio Cardoso, Químico - Coordenador João de Deus, técnico em Química Maurílio Cézar de Faria, técnico em Química Patrícia Neres dos Santos, Química Patrícia Pedrosa Marques, Química Sávio Gonçalves Rosa, Biólogo Marina Miranda Marques Viana, Química

Setor de Análises Químicas

Olguita Geralda Ferreira Rocha, Química e Bioquímica Farmacêutica - Coordenadora Renata Vilela Cecílio Dias, Química

Setor de Recursos da Água

Sávio Rosa, Biólogo — Coordenador Agostinho Clóvis da Silva, Biólogo Célia de Fátima Machado, Bióloga Fábio de Castro Patrício, Biólogo

AVALIAÇÃO DA QUALIDADE DAS ÁGUAS EM 2011

1. O Projeto Águas de Minas

No estado de Minas Gerais, o monitoramento das águas é realizado pelo Instituto Mineiro de Gestão das Águas – IGAM, por meio do Projeto Águas de Minas, em execução desde 1997. A rede básica de monitoramento (macrorede) conta com 429 estações de amostragem distribuídas nas bacias hidrográficas dos rios São Francisco, Grande, Doce, Paranaíba, Paraíba do Sul, Mucuri, Jequitinhonha, Pardo, Buranhém, Itapemirim, Itabapoana, Itanhém, Itaúnas, Jucurucu, Peruípe, São Mateus e Piracicaba/Jaguari. Nas regiões em que são dominantes as pressões ambientais decorrentes de atividades industriais, minerárias e de infra-estrutura, são operadas redes de monitoramento específicas para cada tipo de pressão antrópica, as quais são denominadas redes dirigidas, atualmente com 183 estações (114 exclusivas e 69 coincidentes com a rede básica). Essas redes têm objetivos específicos, tais como subsidiar as propostas de enquadramento das bacias do rio Paracatu e da Pampulha, acompanhar a efetividade das ações de saneamento e o impacto das atividades minerárias na bacia do rio das Velhas e das atividades agrícolas na bacia do rio Verde Grande.

As amostragens e análises laboratoriais são realizadas pela Fundação Centro Tecnológico de Minas Gerais – CETEC. No caso da rede básica as campanhas de amostragem são trimestrais, com um total anual de 4 campanhas por estação de monitoramento. Nas campanhas completas, realizadas em janeiro/fevereiro/março julho/agosto/setembro, е caracterizando em respectivamente os períodos de chuva e estiagem, são analisados 50 parâmetros comuns ao conjunto de pontos de amostragem. Nas campanhas intermediárias. realizadas nos meses abril/maio/junho outubro/novembro/dezembro, caracterizando os demais períodos climáticos do ano, são analisados 18 parâmetros genéricos em todos os pontos, além daqueles característicos das fontes poluidoras que contribuem para a área de drenagem da estação de coleta. Em relação às redes dirigidas a fregüência de amostragem e os parâmetros analisados podem variar de acordo com a especificidade de cada uma.

Para avaliar a situação ambiental no estado de Minas Gerais, o Projeto Águas de Minas utiliza, além dos parâmetros monitorados, os indicadores: Índice de Qualidade das Águas – IQA, Contaminação por Tóxicos – CT, Índice de Estado Trófico- IET, Densidade de Cianobactérias e Ensaios de Ecotoxicidade, sendo que os dois últimos são realizados apenas em alguns pontos específicos.

O Índice de Qualidade das Águas – IQA reflete a contaminação das águas em decorrência da matéria orgânica e fecal, sólidos e nutrientes e sumariza os resultados de 9 parâmetros (oxigênio dissolvido, coliformes termotolerantes, pH, demanda bioquímica de oxigênio, nitrato, fosfato total, variação da temperatura da água, turbidez e sólidos totais). Os valores do índice variam entre 0 e 100 e os níveis de qualidade são classificados como Muito Ruim (0 ≤

 $IQA \le 25$), Ruim (25 < $IQA \le 50$), Médio (50 < $IQA \le 70$), Bom (70 < $IQA \le 90$) e Excelente (90 < $IQA \le 100$).

A Contaminação por Tóxicos – CT avalia a presença de 13 substâncias tóxicas nos corpos de água, quais sejam: arsênio total, bário total, cádmio total, chumbo total, cianeto livre, cobre dissolvido, cromo total, fenóis totais, mercúrio total, nitrito, nitrato, nitrogênio amoniacal total e zinco total. Os resultados das análises laboratoriais são comparados com os limites definidos nas classes de enquadramento dos corpos de água pelo Conselho Estadual de Política Ambiental - COPAM e Conselho Estadual de Recursos Hídricos - CERH, na Deliberação Normativa Conjunta nº 01/08. A denominação Baixa refere-se à ocorrência de substâncias tóxicas em concentrações que excedam em até 20% o limite de classe de enquadramento do trecho do corpo de água onde se localiza a estação de amostragem. A contaminação Média refere-se à faixa de concentração que ultrapasse os limites mencionados no intervalo de 20% a 100%, enquanto a contaminação Alta refere-se às concentrações que excedam em mais de 100% os limites.

O Índice de Estado Trófico (IET) tem por finalidade classificar corpos de água em diferentes graus de trofia, ou seja, avaliar a qualidade da água quanto ao enriquecimento por nutrientes e seu efeito relacionado ao crescimento excessivo de algas (eutrofização). Como decorrência do processo de eutrofização, o ecossistema aquático passa da condição de oligotrófico e mesotrófico para eutrófico ou mesmo hipereutrófico. Para a classificação deste índice são adotados os seguintes estados de trofia: Ultraoligotrófico (IET \leq 47), Oligotrófico (47 < IET \leq 52), Mesotrófico (52 < IET \leq 59), Eutrófico (59 < IET \leq 63), Supereutrófico (63 < IET \leq 67) e Hipereutrófico (IET > 67).

As cianobactérias são microorganismos presentes em ambientes aquáticos e algumas espécies são capazes de produzir toxinas que podem ser prejudiciais à saúde humana e animal. Frente à sua importância para a qualidade de água e saúde pública e ao objetivo de manter a consonância entre os parâmetros monitorados e a legislação vigente, a avaliação da densidade de cianobactérias foi incluída no monitoramento da qualidade das águas do estado de Minas Gerais a partir de janeiro de 2007. Para tanto, foi definida uma rede de monitoramento que priorizasse locais em que predominam condições potencialmente propícias ao desenvolvimento de florações de cianobactérias. Os resultados das análises laboratoriais são comparados aos limites estabelecidos na Deliberação Normativa Conjunta COPAM/CERH nº 01/08 para cada classe de uso da água: 20.000 cel/mL para corpos de água de classe 1, 50.000 cel/mL para os de classe 2 e 100.000 cel/mL para classe 3. No caso de uso para recreação de contato primário o valor máximo é de 10.000 cel/mL.

Finalmente, os ensaios de ecotoxicidade consistem na determinação do potencial tóxico de um agente químico ou de uma mistura complexa, sendo os efeitos desses poluentes detectados através da resposta de organismos vivos. No ensaio de ecotoxicidade crônica, o organismo aquático utilizado é o microcrustáceo *Ceriodaphnia dubia*. A avaliação dos dados é feita considerando a porcentagem de resultados positivos dos ensaios de

ecotoxicidade e são apresentados como: Efeito Agudo (letalidade ou paralisia até 48h), Efeito Crônico (efeito após 48h) e Não Tóxico (efeito não observado).

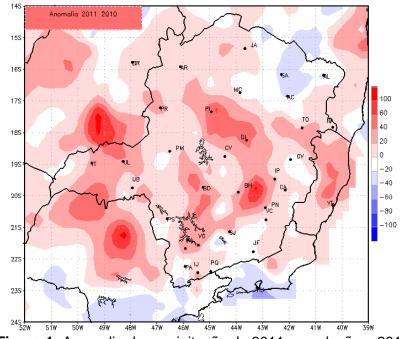
Nesse relatório são apresentados os resultados desses indicadores de qualidade das águas considerando-se a série histórica de dados para a rede básica de monitoramento.

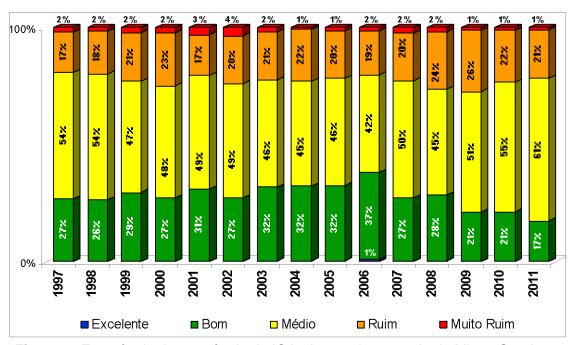
Associado ao monitoramento de qualidade das águas avaliou-se também a precipitação anual em Minas Gerais, visando verificar a sua influência nos resultados dos indicadores de qualidade das águas.

2. Climatologia anual de precipitação no ESTADO

A climatologia do estado de Minas Gerais apresenta grande variabilidade na distribuição das chuvas, ocorrendo visivelmente uma divisão entre o setor Centro-Norte, que apresenta menor volume de chuva e o setor Centro-Sul, com maior volume.

Na Figura 1 encontra-se a comparação da precipitação ocorrida no ano de 2011 em relação a 2010. Verificou-se que no extremo norte do Jequitinhonha (Bacia do rio Jequitinhonha), no extremo leste da região Norte, na região da Zona da Mata (Bacia do rio Paraíba do Sul) e no extremo sul do estado (bacia do rio Piracicaba/Jaguari) ocorreram chuvas até 40% abaixo do observado em 2010. Por outro lado, para a região Central (bacias dos rios Pará, Paraopeba e Velhas) foram registradas chuvas até 60 % acima do ocorrido em 2010. Observaram-se também valores positivos, acima de 40 % em relação a 2010, nas áreas do Triângulo Mineiro (bacia dos rios Grande e Paranaíba), na região Sul (Bacia do rio Grande) e Leste do Estado (passando pelas bacias dos rios Paraíba do Sul e Doce até Mucuri).




Figura 1: Anomalia de precipitação de 2011 em relação a 2010.

3. Condição Geral de Qualidade das Águas no ESTADO - Rede Básica de Monitoramento

A operação da rede básica de monitoramento (macro-rede) se iniciou em 1997, com 222 estações de amostragem. Ao longo dos anos novos pontos foram implantados, totalizando 429 estações em 2011.

Índice de Qualidade das Águas - IQA

Os valores de freqüência de ocorrência do Índice de Qualidade das Águas – IQA, considerando-se os resultados trimestrais, mostraram a predominância de resultados de IQA Médio nas águas do Estado ao longo da série histórica de monitoramento (Figura 2). Observou-se o aumento das ocorrências de IQA Médio, passando de 55% em 2010 para 61% em 2011 e concomitante diminuição da ocorrência de IQA Bom e Ruim, passando de 21% e 22% em 2010 para 17% e 21%, respectivamente, em 2011. A ocorrência de resultados de IQA Muito Ruim se manteve constante, com 1% de freqüência. Destaca-se que o número de estações monitoradas em 2011 aumentou em relação a 2010, de 401 para 429 estações.

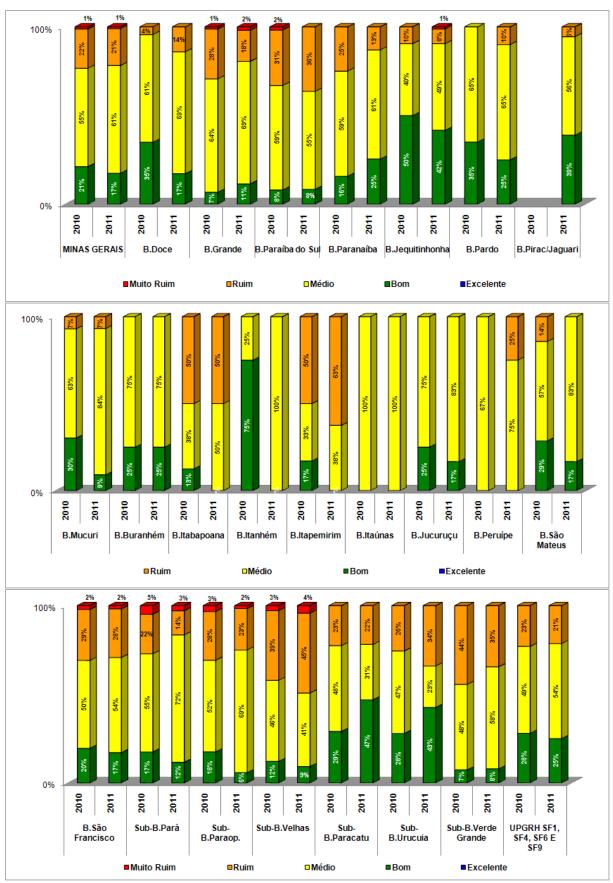


Figura 2: Freqüência de ocorrência do IQA trimestral no estado de Minas Gerais ao longo da série histórica de monitoramento.

Verificou-se a melhoria da qualidade das águas das bacias hidrográficas dos rios Grande, Paranaíba, Paracatu, Urucuia e Verde Grande, com aumento da freqüência de ocorrência de IQA Bom de 7, 16, 29, 28 e 7%, respectivamente, em 2010 para 11, 25, 47, 43 e 8%, respectivamente, em 2011 (Figura 3). Registrou-se ainda diminuição da freqüência de ocorrência de IQA Ruim nas bacias dos rios Paranaíba (25% em 2010 e 13% em 2011), Paracatu (23% em 2010 e 22% em 2011) e Verde Grande (44% em 2010 e 35% em 2011).

Para as demais bacias hidrográficas monitoradas observou-se a diminuição da freqüência de ocorrência de IQA Bom, com destaque para as bacias dos rios Doce (35% em 2010 e 17% em 2011), Jequitinhonha (50% em 2010 e 42% em 2011), Mucuri (30% em 2010 e 9% em 2011), Pardo (35% em 2010 e 25% em 2011), Pará (17% em 2010 e 12% em 2011), Paraopeba (18% em 2010 e 6% em 2011) e Velhas (12% em 2010 e 9% em 2011), como mostrado na Figura 3. Contatou-se ainda o aumento da freqüência de ocorrência de IQA Ruim nas bacias dos rios Doce (4% em 2010 e 14% em 2011), Pardo (0% em 2010 e 10% em 2011), Pará (14% em 2010 e 28% em 2011) e Velhas (38% em 2010 e 45% em 2011).

Ressalta-se que nas regiões Central (bacias dos rios Pará, Paraopeba e Velhas) e Leste do Estado (bacias dos rios Doce até Mucuri) a precipitação anual em 2011 foi maior que em 2010, sugerindo que o aumento da chuva contribuiu para o comprometimento da qualidade dos corpos de água pela influência das fontes difusas de poluição.

Figura 3: Freqüência de ocorrência do IQA trimestral nas bacias hidrográficas de MG nos anos de 2010 e 2011.

Na Tabela 1 são listados os trechos de corpos hídricos que apresentaram as melhores condições de qualidade de água em todo o Estado, considerando-se a ocorrência de IQA Bom em pelo menos três das quatro campanhas de monitoramento realizadas em 2011. Destacam-se os rios Grande a jusante do reservatório de Itutinga (BG007) e a montante da confluência com o rio Pardo (BG061), rio Jequitinhonha próximo a localidade de Caçaratiba (JE005), rio Araçuaí a jusante da confluência com o Rio Itamarandiba (JE013) e rio Araguari a jusante do reservatório de Miranda (PB019), que apresentaram IQA Bom nas quatro campanhas de amostragem.

Tabela 1: Corpos de água que apresentaram as melhores condições de qualidade das águas em Minas Gerais em 2011

Bacia/Sub- bacia	Corpos de água	Munícipio	Estação	Descrição	
Rio Grande	Rio Grande	Itutinga / Nazareno	BG007	Rio Grande a jusante do reservatório de Itutinga	
	Rio Grande	Colômbia / Planura	BG061	Rio Grande a montante da confluência com o Rio Pardo	
	Rio Pardo	Bandeira do Sul / Poços de Caldas	BG075	Rio Pardo a montante de Bandeira do Sul	
	Rio Jequitinhonha	Diamantina / Serro	JE001	Rio Jequitinhonha a jusante da localidade de São Gonçalo do Rio das Pedras	
	Rio Jequitinhonha	Bocaiúva / Carbonita / Turmalina	JE005	Rio Jequitinhonha próximo a localidade de Caçaratiba	
Б.	Rio Jequitinhonha	Berilo / Virgem da Lana		Rio Jequitinhonha a jusante da confluência com o rio Itacambiruçu	
Rio Jequitinhonha	Rio Itamarandiba	diba Veredinha		Rio Itamarandiba a montante de Veredinha.	
	Rio Araçuaí	Turmalina	JE013	Rio Araçuaí a jusante da confluência com o Rio Itamarandiba	
	Rio Araçuaí	Berilo	JE015	Rio Araçuaí, a jusante da cidade de Berilo	
	Rio Jequitinhonha	Salto da Divisa	JE025	Rio Jequitinhonha no município de Salto da Divisa	
Rio Pará	Córrego do Salobro	Pompéu	PA044	Córrego do Salobro a jusante do município de Pompéu	
Rio São Francisco	Rio São Francisco	•		Rio São Francisco a montante da cidade de Vargem Bonita	
Rio Paracatu	Rio da Prata	João Pinheiro / Lagoa Grande	PT001	Rio da Prata a jusante da cidade de João Pinheiro	
RIO Paracalu	Rio Paracatu	Lagoa Grande / Paracatu	PT003	Rio Paracatu a montante da foz do rio da Prata	
Rio Doce	Rio Manhuaçu	Aimorés	RD065	Rio Manhuaçu próximo a sua foz no Rio Doce	
	Rio Manhuaçu	Inhapim / Pocrane	RD098	Rio Manhuaçu, em seu trecho intermediário	
Rio Paranaíba	Rio Araguari	Araguari / Uberlândia	PB019	Rio Araguari a jusante do reservatório de Miranda	

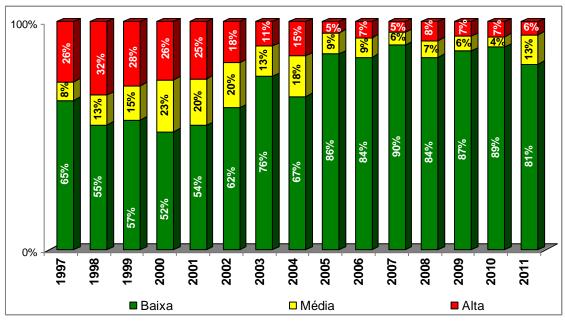
Na Tabela 2 são listados os trechos de corpos hídricos que apresentaram as piores condições de qualidade de água no Estado, considerando-se a ocorrência de IQA Muito Ruim em pelo menos uma das campanhas de monitoramento de 2011. Ressaltam-se o córrego Liso a jusante de São

Sebastião do Paraíso (BG071), com o menor valor de IQA (12,5) no primeiro trimestre de 2011 e o ribeirão das Areias a montante de sua foz no rio Betim (BP073), o córrego do Pinto ou Buriti a jusante de São Gonçalo do Pará (PA034), o ribeirão do Onça próximo de sua foz no Rio das Velhas (BV154) e o ribeirão Arrudas próximo de sua foz no Rio das Velhas (BV155) que apresentaram IQA Muito Ruim em duas das quatro campanhas de 2011.

Tabela 2: Corpos de água que apresentaram as piores condições de qualidade em Minas Gerais em 2011

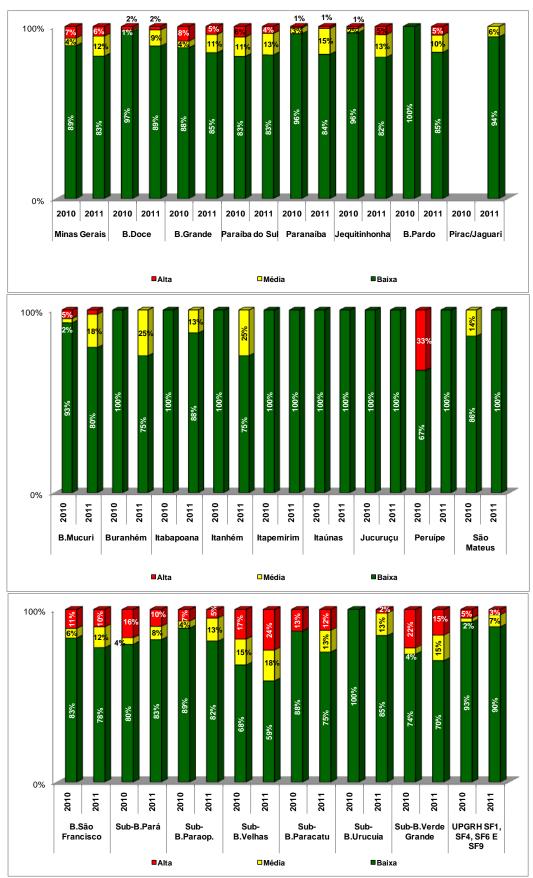
Bacia/Sub-bacia	Corpos de água	Munícipio	Estação	Descrição
	Córrego Liso	São Sebastião do Paraíso	BG071	Córrego Liso a jusante de São Sebastião do Paraíso
Rio Grande	Ribeirão Ouro Fino	Ouro Fino	BG079	Ribeirão Ouro Fino na cidade de Ouro Fino
	Ribeirão da Pirapetinga	Andradas	BG091	Ribeirão Pirapetinga a jusante da cidade de Andradas
Rio Paraopeba	Ribeirão das Areias	Betim	BP073	Ribeirão das Areias a montante de sua foz no rio Betim
	Rio das Velhas	Santa Luzia	BV105	Rio das Velhas logo a jusante do Ribeirão do Onça
Rio das Velhas	Ribeirão do Onça	Santa Luzia	BV154	Ribeirão do Onça próximo de sua foz no Rio das Velhas
Rio das veinas	Ribeirão Arrudas	Sabará	BV155	Ribeirão Arrudas próximo de sua foz no Rio das Velhas
	Rio das Velhas	Baldim	BV156	Rio das Velhas logo a jusante do Rio Jabuticatubas
	Rio do Picão	Martinho Campos	PA017	Rio Picão a montante da confluência com o rio Pará
Rio Pará	Ribeirão da Fartura	Nova Serrana	PA020	Ribeirão Fartura ou Gama a jusante da cidade de Nova Serrana
	Córrego Buriti ou Córrego do Pinto	São Gonçalo do Pará	PA034	Córrego do Pinto ou Córrego Buriti a jusante do município de São Gonçalo do Pará
Rio Jequitinhonha	Rio Salinas	Salinas	JE010	Rio Salinas na cidade de Salinas

A ocorrência de IQA Muito Ruim constatada nesses corpos de água está associada aos lançamentos de esgotos sanitários dos municípios presentes nessas regiões. No córrego Liso (BG071) e nos ribeirões Ouro Fino (BG079) e Pirapetinga (BG091), esse resultado está associado ainda à presença de matadouros, laticínios e indústrias alimentícias presentes na área de drenagem dessas bacias, além de curtumes em São Sebastião do Paraíso e do desenvolvimento de pecuária na região de Ouro Fino e Andradas.


No ribeirão das Areias (BP073) essa condição de qualidade está associada às atividades industriais, especialmente têxtil e papéis e de abate de animais desenvolvidas no município de Betim. Por outro lado, nos ribeirões Arrudas (BV155) e do Onça (BV154) e no rio das Velhas a jusante do ribeirão do Onça (BV105), a ocorrência de IQA Muito Ruim também pode ter sido influenciada pela presença de indústrias alimentícias e têxteis em Belo Horizonte e Contagem. No rio das Velhas a jusante do rio Jabuticatubas (BV156) esta condição de qualidade se deve também aos efluentes de fábricas de doces e

sucos, granjas e hortifrutigranjeiros (pepino, tomate e quiabo) existentes na região de Baldim.

No rio Picão (PA017), ribeirão fartura ou Gama (PA020) e no córrego do Pinto (PA034), o IQA Ruim está associado também a agropecuária e ainda aos efluentes de curtumes e indústrias têxteis nos municípios de Martinho Campo e São Gonçalo do Pará, enquanto, no rio Salinas (JE010) esse resultado também pode ser influenciado pelo desenvolvimento da agricultura na região de Salinas.


Contaminação por Tóxicos

A ocorrência de CT Baixa foi predominante em 2011 (81%), assim como nos anos anteriores. Verificou-se o aumento da ocorrência de CT Média, passando de 4% em 2010, para 6% em 2011 e uma diminuição da freqüência de CT Alta de 7% em 2010 para 6% no ano seguinte (Figura 4).

Figura 4: Freqüência de ocorrência da CT trimestral no estado de Minas Gerais ao longo da série histórica de monitoramento.

Constatou-se o aumento da freqüência de ocorrência de Contaminação por Tóxicos Baixa nas bacias do rio Pará, Peruípe e São Mateus, passando de 80, 67 e 80%, respectivamente, em 2011 para 83, 100 e 100%, respectivamente, em 2011 (Figura 5). Registrou-se ainda diminuição da freqüência de ocorrência de CT Alta nas bacias dos rios Pará (16% em 2010 e 10% em 2011), Peruípe (33% em 2010 e 0% em 2011) e Paraíba do Sul (6% em 2010 e 4% em 2011). Por outro lado, para as demais bacias hidrográficas monitoradas observou-se um aumento da freqüência de ocorrência de CT Alta e Média, conforme apresentado na Figura 5.

Figura 5: Freqüência de ocorrência da CT trimestral nas bacias hidrográficas de MG nos anos de 2010 e 2011.

Os percentuais de ocorrência de CT Média e Alta no estado de Minas Gerais em 2011 estão associados principalmente às elevadas concentrações de:

- fenóis totais (41%): Bacias dos rios das Velhas, Pará, Paraopeba, Entorno de Três Marias, Paracatu, Urucuia, Verde Grande, Buranhém, Doce, Jequitinhonha, Mucuri, Pardo, Paranaíba, Paraíba do Sul e Grande;
- cianetos livres (24%): Bacias dos rios Jequitaí/Pacuí, Velhas, Pará, Paraopeba, Verde Grande, Doce, Jequitinhonha, Mucuri, Itabapoana, Itanhém, Paranaíba, Paraíba do Sul, Piracicaba/Jaguari e Grande;
- arsênio total (17%): Bacias dos rios das Velhas, Jequitaí/Pacuí, Urucuia, Pandeiros, Paracatu e Doce;
- nitrogênio amoniacal (10%): Bacias dos rios das Velhas, Pará, Paraopeba, Verde Grande, Mucuri, Paranaíba, Paraíba do Sul e Grande.

Na Tabela 3 são listadas as estações de monitoramento com condição mais crítica em relação à presença de contaminantes tóxicos no estado de Minas Gerais, uma vez que apresentaram substâncias tóxicas com concentrações superiores a 100% do limite legal em todas as campanhas realizadas em 2011. Dentre esses corpos de água, destaca-se o córrego Liso a jusante de São Sebastião do Paraíso (BG071), haja vista que apresentou o maior número de parâmetros (5) em concentrações superiores a 100% do limite legal seguido, do ribeirão da Fartura a jusante da cidade de Nova Serrana (PA034), com 4 parâmetros.

Tabela 3: Corpos de água que apresentaram as condições mais críticas de CT Alta

em Minas Gerais em 2011

Bacia/Sub-	Corpos de				Parâmetros	
bacia	água	Munícipio	Estação	Descrição	Responsáveis pela CT Alta em 2011	
Rio Grande	Córrego Liso	São Sebastião do Paraíso	BG071	Córrego Liso a jusante de São Sebastiãodo Paraíso	Nitrogênio Amoniacal Total, Cianeto Total, Fenóis Totais, Cobre Total, Cromo Total	
Rio Paraopeba	Ribeirão das Areias	Betim	BP073	Ribeirão das Areias a montante de sua foz no rio Betim	Nitrogênio Amoniacal Total, Cianeto Total, Fenóis Totais	
Rio das Velhas (SF)	Ribeirão Água Suja	Nova Lima	BV062	Ribeirão Água Suja próximo de sua foz no Rio das Velhas	Arsênio Total, Fenóis Totais	
	Rio das Velhas	Santana de Pirapama	BV141	Rio das Velhas na cidade de Santana do Pirapama	Arsênio Total, Zinco Total	
	Rio das Velhas	Inimutaba / Presidente Juscelino	BV142	Rio das Velhas a jusante do ribeirão Santo Antônio	Arsênio Total	
	Rio das Velhas	Santo Hipólito	BV152	Rio das Velhas entre os Rios Paraúna e Pardo Grande	Arsênio Total	
	Rio das Velhas	Baldim	BV156	Rio das Velhas logo a jusante do Rio Jabuticatubas	Arsênio Total, Chumbo Total	
Rio Pará	Ribeirão da Fartura	Nova Serrana	PA020	Ribeirão Fartura ou Gama a jusante da cidade de Nova Serrana (próximo de sua foz no rio Pará)	Nitrogênio Amoniacal Total, Cianeto Total, Fenóis Totais	
(SF)	Córrego Buriti ou Córrego do Pinto	São Gonçalo do Pará	PA034*	Córrego do Pinto ou Córrego Buriti a jusante do município de São Gonçalo do Pará	Nitrogênio Amoniacal Total, Cianeto Total, Fenóis Totais, Cromo Total	
Rio Verde Grande (SF)	Ribeirão dos Vieiras ou Rio dos Vieiras	Montes Claros	VG003	Ribeirão dos Vieiras a jusante da cidade de Montes Claros	Nitrogênio Amoniacal Total, Cianeto Total, Nitrato Total	
Rio Paracatu (SF)	Córrego Rico	Paracatu	PT005	Córrego Rico a jusante da cidade de Paracatu	Arsênio Total	

^{*}Estação de monitoramento com 3 campanhas de amostragem realizadas em 2011.

No córrego Liso em São Sebastião do Paraíso (BG071) foram registrados teores de nitrogênio amoniacal, cianeto total, fenóis totais, cobre total e cromo total responsáveis pela CT Alta. As ocorrências de nitrogênio e fenóis estão relacionadas aos lançamentos de esgotos sanitários e efluentes de matadouros, laticínios e indústrias alimentícias provenientes do município de São Sebastião do Paraíso. A presença de cobre, cianeto e cromo está associada aos lançamentos de efluentes industriais, especialmente de curtumes e têxtil, presentes nesse município.

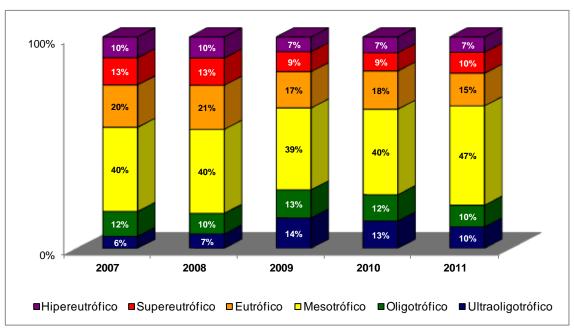
No ribeirão das Areias a montante de sua foz no rio Betim (BP073) a CT Alta ocorreu em função da presença de nitrogênio amoniacal, cianeto e fenóis totais em suas águas. As ocorrências de nitrogênio e fenóis estão relacionadas aos

lançamentos de esgotos sanitários e efluentes de indústria têxtil e papéis e de abate de animais desenvolvidas no município de Betim; enquanto a presença de cianeto se deve ao tratamento de superfícies metálicas e galvanoplastias/siderurgia.

No ribeirão Água Suja próximo de sua foz no rio das Velhas (BV062), no rio das Velhas na cidade de Santana do Pirapama (BV141), a jusante do ribeirão Santo Antônio (BV142), entre os rios Paraúna e Pardo Grande (BV152) e a jusante do rio Jabuticatubas (BV156) o registro de CT Alta ocorreu em função da presença de arsênio total. As fontes de arsênio na bacia do rio das Velhas concentram-se em seu alto curso, região de Nova Lima, onde estão localizadas as fontes naturais. Entretanto, o beneficiamento de minério de ouro contribui para sua disponibilização para o corpo de água. A presença de fenóis totais no ribeirão Água Suja (BV062) se deve ao lançamento de esgotos domésticos nos corpos de água, de Nova Lima. As ocorrências de zinco no rio das Velhas em Santana do Pirapama (BV142) e de chumbo a jusante do rio Jaboticatubas (BV156) pode estar relacionado com a utilização de agroquímicos no médio e baixo curso do rio das Velhas.

No ribeirão da Fartura (PA020) e no Córrego do Pinto (PA034) a presença de nitrogênio amoniacal, cianeto e fenóis totais está associada aos lançamentos de indústrias de calçados e têxteis, enquanto a concentração de cromo verificada no ponto PA034 se deve aos curtumes presentes na região.

No ribeirão dos Vieiras a jusante da cidade de Montes Claros (VG003), a CT Alta ocorreu devido às concentrações de nitrogênio amoniacal total, cianeto e nitrato total. As ocorrências das variáveis citadas estão associadas aos lançamentos dos esgotos sanitários no ribeirão dos Vieiras originados da cidade de Montes Claros e aos lançamentos dos efluentes industriais provenientes do distrito industrial da mesma cidade, sobretudo das fábricas de componentes automotivos e plásticos e do ramo têxtil, além das atividades agrícolas desenvolvidas na região.


No córrego Rico a jusante da cidade de Paracatu (PT005), a ocorrência de CT Alta ocorreu em função da presença de arsênio total e está associada às atividades de garimpo existentes no passado e, em menor escala, às atividades minerárias (ouro) desenvolvidas no alto curso dessa sub-bacia e também às fontes naturais de arsênio na região.

Ressalta-se que o aumento de chuvas ocorrido nas regiões Central (bacias dos rios Pará, Paraopeba e Velhas) e nas áreas do Triângulo Mineiro (bacia dos rios Grande e Paranaíba) e na região Sul (bacia do rio Grande) em 2011 em relação a 2010, aponta para a influência das fontes difusas de poluição no comprometimento da qualidade desses corpos de água.

Índice de Estado Trófico - IET

Para avaliar o potencial de eutrofização foi calculado o Índice de Estado Trófico (IET) a partir dos valores de fósforo e clorofila-a obtidos no período de 2007 a 2011 em Minas Gerais. São 429 estações de monitoramento, sendo todas localizadas em corpos de águas lóticos.

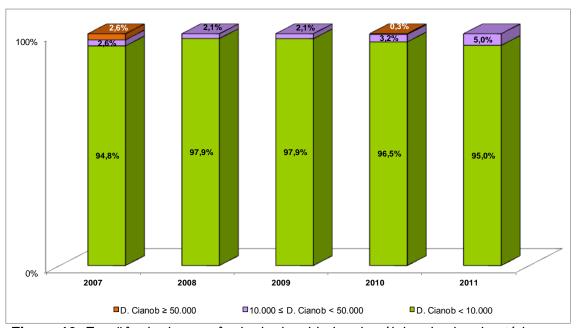
Como mostrado na Figura 9, verificou-se em 2011, o predomínio das categorias mais baixas do IET (Ultraoligotrófico, Oligotrófico e Mesotrófico), as quais conjuntamente representaram 67 % dos resultados obtidos em 2011, seguindo a mesma tendência observada nos anos anteriores. Por outro lado, as condições mais favoráveis à eutrofização (crescimento da biomassa algal), representadas pelas categorias mais altas do IET (Eutrófico, Supereutrófico e Hipereutrófico) representaram conjuntamente 33% dos resultados.

Figura 9: Freqüência de ocorrência de IET trimestral nas bacias do estado de Minas Gerais no período de 2007 a 2011.

As piores condições em relação ao IET (condição hipereutrófica) foram encontradas principalmente nos corpos de água que recebem efluentes sanitários e industriais dos grandes centros urbanos, como os da região metropolitana de Belo Horizonte e dos municípios de Visconde de Rio Branco, São Sebastião do Paraíso, Carmópolis de Minas, Poços de Caldas e Montes Claros. Além dos impactos causados pelo recebimento dos efluentes sanitários, destaca-se o aporte de nutrientes provenientes principalmente das áreas agrícolas como da região de Iturama, no baixo curso da bacia do rio Grande.

Na Tabela 4 são listadas as estações de monitoramento que apresentaram grau de eutrofização mais avançado (IET Hipereutrófico) nos corpos de água do estado de Minas Gerais em pelo menos três campanhas realizadas em

2011. Ressalta-se que os piores resultados em relação ao IET foram registrados no córrego Santa Rosa a jusante da cidade de Iturama (BG086), nos ribeirões Arrudas (BV155) e do Onça (BV154), localizados na RMBH, e no ribeirão Paiol em Carmópolis de Minas (PA002), confirmando o impacto do aporte de nutrientes provenientes de lançamentos de esgotos sanitários ou das atividades agrícolas que são desenvolvidas nessas regiões.


Tabela 4: Corpos de água com graus de eutrofização mais avançados no estado de Minas Gerais em 2011

Bacia/Sub- bacia	Corpos de água	Munícipio	Estação	Descrição
Rio das Velhas (SF)	Ribeirão do Onça	Santa Luzia	BV154	Ribeirão do Onça próximo de sua foz no rio das Velhas
	Ribeirão Arrudas	Sabará	BV155	Ribeirão Arrudas próximo de sua foz no rio das Velhas
Rio Paraopeba (SF)	Ribeirão das Areias ou Riacho das Pedras	Betim	BP073	Ribeirão das Areias em Betim, a montante de sua foz no rio Betim
	Rio Betim	Betim / Juatuba	BP071	Rio Betim próximo de sua foz no rio Paraopeba, em Betim
Rio Pará (SF)	Ribeirão Paiol	Carmópolis de Minas	PA002	Ribeirão Paiol a jusante de Carmópolis de Minas
Rio Grande	Córrego Liso	São Sebastião do Paraíso	BG071	Córrego Liso a jusante de São Sebastião do Paraíso
	Córrego Santa Rosa	Iturama	BG086	Córrego Santa Rosa a jusante da cidade de Iturama
	Rio Lambari	Poços de Caldas	BG063	Ribeirão das Antas a jusante da cidade de Poços de Caldas
Rio Paraíba do Sul	Rio Xopotó	Visconde do Rio Branco	BS077	Rio Xopotó a jusante da Visconde do Rio Branco
Rio Verde Grande (SF)	Ribeirão dos Vieiras ou Rio dos Vieiras	Montes Claros	VG003	Ribeirão dos Vieiras a jusante da cidade de Montes Claros

Densidade de Cianobactérias

A avaliação da presença de cianobactérias é realizada, atualmente, em 124 estações da rede básica de monitoramento. Em 2011 os resultados da avaliação da densidade de cianobactérias mostraram que prevaleceram contagens menores que 10.000 cél/mL (valor máximo permitido para recreação de contato primário) nos corpos hídricos monitorados em Minas Gerais, condição que vem sendo observada desde 2007 (Figura 10). Apesar de ter sido constatado valores de densidades de cianobactérias entre 10.000 cél/mL e 50.000 cél/mL em 5% dos resultados, vale destacar quem em 2011 não houve registros de densidades superiores ao limite legal para rios de Classe 2 (50.000 cél/mL) em Minas Gerais. Em 2010 essa condição havia sido observada em 0.3% dos resultados avaliados.

Os valores de densidades de cianobactérias entre 10.000 cél/mL e 50.000 cél/mL (Tabela 5) foram registrados em algumas estações localizadas nas bacias dos rios Paraíba do Sul, Paraopeba, São Francisco (SF4, SF6 e SF9) e Velhas com maior destaque para essa última, onde esses valores foram mais recorrentes.

Figura 10: Freqüência de ocorrência de densidades de células de cianobactérias em Minas Gerais ao longo da série histórica de monitoramento.

Na bacia do rio das Velhas, os valores de densidade de cianobactérias acima de 10.000 cél/100mL foram obtidos no médio e baixo curso do rio das Velhas nas estações localizadas em Santa Luzia (BV153), Lagoa Santa (BV137), Santana do Pirapama (BV141) e em Santo Hipólito (BV150 e BV152). Na bacia do rio Paraopeba, essa condição foi observada no ribeirão Sarzedo próximo de sua foz no Rio Paraopeba em Mário Campos (BP086)

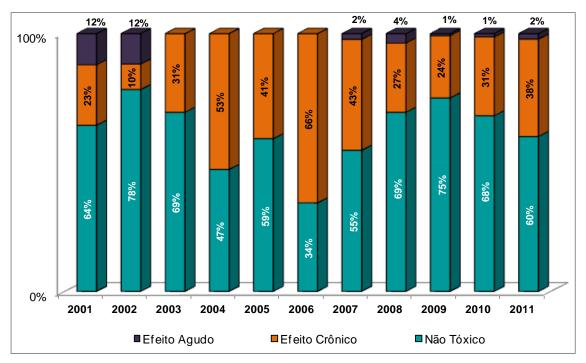
Na bacia do rio Paraíba do Sul os valores de densidade de cianobactérias acima de 10.000 cél/100mL foram obtidos no rio do Pinho a jusante da Represa de Ponte Preta (BS074). O fato dessa estação estar localizada a jusante de um ambiente lêntico (represa) pode ter influenciado no resultado observado, uma vez que ambientes lênticos apresentam maior número de espécies em relação aos ambientes lóticos.

Na bacia do rio São Francisco, nas UPGRH's SF4, SF6 e SF9, as estações que registraram valores de densidade de cianobactérias acima de 10.000 cél/mL estão localizadas no rio São Francisco, no trecho entre os municípios de Três Marias e Manga, como mostrado na Tabela 5.

O maior resultado de densidade de cianobactérias de 2011 foi obtido no ribeirão Sarzedo próximo de sua foz no Rio Paraopeba em Mário Campos (BP086), onde foi registrado 28.461 cél/mL no primeiro trimestre de 2011 (Tabela 5). Entretanto esse resultado não chegou a superar o valor máximo estabelecido na legislação para corpos de água de classe 2.

Destaca-se que foi observada a ocorrência de espécies incluídas na lista de cianobactérias potencialmente tóxicas (Sant'Anna et AL, 2008) como *Planktothrix agardhii* no ribeirão Sarzedo (bacia do rio Paraopeba) em fevereiro de 2011. No entanto, é necessário lembrar que a presença desses organismos,

mesmo que em altas densidades, não acarreta, necessariamente, toxicidade da água. Conforme ressaltam Tsukamoto & Takahashi (2007), a produção de toxina em cada espécie de cianobacteria varia em função da interação de diversos fatores, como a genética, o estado fisiológico do organismo e os parâmetros ambientais. Assim, uma mesma espécie pode produzir toxinas em um ambiente e não produzi-las em outro.


Tabela 5: Corpos de água que apresentaram densidade de cianobactéria igual ou

	10.000 cél/mL em Minas Gerais no ano de 2011							
BACIAS / SUB- BACIAS HIDROGRÁFICA	CORPOS DE ÁGUA	MUNÍCIPIO S	DESCRIÇÃO	ESTAÇÕES	DATA DA COLETA	DENSIDADE CIANOBACTÉRIA	ESPÉCIE PREDOMINANTE	
	Rio das Velhas	Lagoa Santa	Rio das Velhas na Ponte Raul Soares, em Lagoa Santa	BV137	14/10/2011	20.598	Planktothrix sp.	
		Santana de Pirapama	Rio das Velhas na cidade de Santana do Pirapama	BV141	17/10/2011	15.774	Planktothrix sp.	
Rio das Velhas		Santo	Rio das Velhas a jusante do rio Paraúna, em Senhora da Glória	BV150	20/7/2011	16.944	Sphaerocavum brasiliense	
		Hipólito	Rio das Velhas entre os Rios Paraúna e Pardo Grande	BV152	20/7/2011	11.819	Planktothrix sp.	
		Santa Luzia	Rio das Velhas a jusante do Ribeirão da Mata	BV153	13/10/2011	11.357	Planktothrix sp.	
Rio Paraíba do Sul	Rio do Pinho	Santos Dumont	Rio do Pinho a jusante da Represa de Ponte Preta	BS074	25/8/2011	23.819	Nostocacea N.I.	
Rio Paraopeba	Ribeirão Sarzedo	Betim / Mário Campos	Ribeirão Sarzedo próximo de sua foz no Rio Paraopeba em Mário Campos	BP086	7/2/2011	28.462	Planktothrix agardhii	
	Rio São Francisco	São Gonçalo	Rio São Francisco a jusante	SF015	19/5/2011	27.215,4	Nostocaceae N.I.	
		do Abaeté / Três Marias	reservatório de Três Marias	35013	11/8/2011	23.476,8	Nostocaceae N.I.	
		Três Marias	Rio São Francisco sob a ponte na BR 040, a jusante da Represa de Três Marias	SF054	20/5/2011	16.562,4	Nostocaceae N.I.	
					12/8/2011	10.773,6	Nostocaceae N.I.	
		Pirapora	Rio São Francisco a montante da foz do rio das Velhas	SF019	16/6/2011	17.848,8	Nostocaceae N.I.	
Rio São		lbiaí	Rio São Francisco a jusante da cidade de Ibiaí	SF023	16/6/2011	10.854,0	Nostocaceae N.I.	
Francisco (SF4, SF6 e SF9)		São Romão	Rio São Francisco a jusante da cidade de São Romão	SF025	17/6/2011	10.613	Nostocaceae N.I.	
		São Francisco	Rio São Francisco a jusante da cidade de São Francisco	SF027	16/9/2011	11.417	Nostocaceae N.I.	
		Januária	Rio São Francisco a jusante da cidade de Januária	SF029	20/6/2011	12.944	Nostocaceae N.I.	
		Itacarambi	Rio São Francisco a jusante da cidade de Itacarambi	SF031	21/6/2011	21.065	Nostocaceae N.I.	
		Manga	Rio São Francisco a jusante da cidade de Manga	SF033	21/6/2011	16.884	Nostocaceae N.I.	

Dentre os principais fatores de pressão que podem ter contribuído para as densidades de cianobactérias registradas no rio das Velhas e no rio São Francisco destacam-se o aporte de nutrientes para esses corpos de água proveniente principalmente da carga difusa de áreas agrícolas. Sobrepõe-se também a carga orgânica proveniente dos lançamentos de esgotos sanitários, como no trecho do rio das Velhas entre Santa Luzia e Lagoa Santa. Na bacia do rio Paraopeba destaca-se os lançamentos de esgotos sanitários dos municípios de Betim e Mário Campos. Na bacia do rio Paraíba do Sul o fato da estação estar localizada a jusante de um ambiente lêntico (represa) pode ter influenciado no resultado observado, uma vez que ambientes lênticos, como lagos e represas, apresentam condições mais favoráveis ao desenvolvimento do fitoplâncton.

Ensaios Ecotoxicológicos

Os Ensaios Ecotoxicológicos são realizados, atualmente, em 163 estações da rede básica de monitoramento. No ano de 2011 não foram observados efeitos tóxicos sobre os organismos-teste na maioria das análises realizadas (60%), condição que tem prevalecido ao longo da série histórica de monitoramento (Figura 11). O Efeito Crônico foi registrado em 38% das amostras e o Efeito Agudo em apenas 2% das amostras analisadas.

Figura 11: Freqüência de ocorrência dos resultados de ecotoxicidade em Minas Gerais ao longo da série histórica de monitoramento.

Na Tabela 6 estão listados os corpos de água que apresentaram as piores condições em relação aos Ensaios Ecotoxicológicos no ano de 2011, considerando-se a ocorrência de Efeito Agudo em pelo menos uma campanha de monitoramento desse ano. O Efeito Agudo (morte dos organismos) foi observado no córrego Liso em São Sebastião do Paraíso e Ribeirão Ouro Fino a jusante de Ouro Fino (bacia do rio Grande, estações BG071 e BG079), no ribeirão dos Vieiras em Montes Claros (bacia do rio Verde Grande, estação VG003), nos ribeirões Arrudas e do Onça na região metropolitana de Belo Horizonte (bacia do rio das Velhas, estações BV155 e BV155), Rio Jordão a montante de Araguari (bacia do rio Paranaíba, estação PB041) e Rio Paraíba do Sul em Cambuci/RJ (bacia do rio Paraíba do Sul, estação BS079) indicando condições potencialmente restritivas ao desenvolvimento da vida aquática.

Esses resultados refletem principalmente os impactos dos lançamentos de esgotos sanitários e efluentes industriais dos municípios mencionados acima.

Tabela 6: Corpos de água que apresentaram as piores condições em relação aos Ensaios Ecotoxicológicos no ano de 2011

Erisaios Ecotoxicológicos no ano de 2011							
BACIAS / SUB- BACIAS HIDROGRÁFICAS	CORPOS DE ÁGUA	MUNÍCIPIOS	DESCRIÇÃO	ESTAÇÕES	DATA DE AMOSTRAGEM	EFEITO OBSERVADO	
		Sabará	Ribeirão Arrudas próximo	BV155	18/1/2011	Efeito crônico	
	Ribeirão Arrudas		de sua foz no Rio das		12/7/2011	Efeito agudo	
Rio das Velhas			Velhas		11/10/2011	Efeito agudo	
(SF)			Piboirão do Onca próvimo		5/4/2011	Efeito crônico	
	Ribeirão do Onça	Santa Luzia	Ribeirão do Onça próximo de sua foz no rio das	BV154	12/7/2011	Efeito crônico	
			Velhas		11/10/2011	Efeito agudo	
	Ribeirão dos Vieiras ou Rio dos Vieiras	Montes Claros	Ribeirão dos Vieiras a jusante da cidade de	VG003	24/3/2011	Efeito crônico	
Rio Verde Grande (SF)					29/6/2011	Efeito agudo	
			Montes Claros		27/9/2011	Efeito agudo	
	Córrego Liso	São Sebastião do Paraíso	Córrego Liso a jusante de São Sebastião do Paraíso	BG071	1/6/2011	Efeito crônico	
					31/8/2011	Efeito agudo	
Rio Grande					9/11/2011	Efeito crônico	
	Ribeirão Ouro Fino	Ouro Fino	Ribeirão Ouro Fino na	BG079	27/5/2011	Efeito agudo	
	Ribellao Oulo Fillo		cidade de Ouro Fino		25/8/2011	Efeito crônico	
Rio Paranaíba	Rio Jordão	Araguari		PB041	13/6/2011	Efeito agudo	
			Rio Jordão a montante da cidade de Araguari		12/9/2011	Efeito crônico	
			Ŭ "		5/12/2011	Efeito crônico	
Rio Paraíba do Sul	Rio Paraíba do Sul	Cambuci (RJ)	Rio Paraíba do Sul a jusante da confluência do rio Pomba	BS079	18/11/2011	Efeito agudo	